Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan.
Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan.
ACS Nano. 2024 Feb 13;18(6):4822-4839. doi: 10.1021/acsnano.3c09608. Epub 2024 Jan 29.
Efficiently delivering exogenous materials into primary neurons and neural stem cells (NSCs) has long been a challenge in neurobiology. Existing methods have struggled with complex protocols, unreliable reproducibility, high immunogenicity, and cytotoxicity, causing a huge conundrum and hindering in-depth analyses. Here, we establish a cutting-edge method for transfecting primary neurons and NSCs, named teleofection, by a two-step process to enhance the formation of biocompatible calcium phosphate (CaP) nanoparticles. Teleofection enables both nucleic acid and protein transfection into primary neurons and NSCs, eliminating the need for specialized skills and equipment. It can easily fine-tune transfection efficiency by adjusting the incubation time and nanoparticle quantity, catering to various experimental requirements. Teleofection's versatility allows for the delivery of different cargos into the same cell culture, whether simultaneously or sequentially. This flexibility proves invaluable for long-term studies, enabling the monitoring of neural development and synapse plasticity. Moreover, teleofection ensures the consistent and robust expression of delivered genes, facilitating molecular and biochemical investigations. Teleofection represents a significant advancement in neurobiology, which has promise to transcend the limitations of current gene delivery methods. It offers a user-friendly, cost-effective, and reproducible approach for researchers, potentially revolutionizing our understanding of brain function and development.
将外源物质高效递送至原代神经元和神经干细胞(NSCs)一直是神经生物学领域的挑战。现有的方法存在复杂的方案、不可靠的重现性、高免疫原性和细胞毒性等问题,这造成了巨大的困境,阻碍了深入的分析。在这里,我们通过两步法建立了一种用于转染原代神经元和 NSCs 的尖端方法,称为远程转染,以增强生物相容性的磷酸钙(CaP)纳米颗粒的形成。远程转染能够将核酸和蛋白质同时转染到原代神经元和 NSCs 中,无需专门的技能和设备。通过调整孵育时间和纳米颗粒数量,可以轻松微调转染效率,满足各种实验要求。远程转染的多功能性允许将不同的载体递送到同一细胞培养物中,无论是同时还是顺序进行。这种灵活性对于长期研究非常有价值,可以监测神经发育和突触可塑性。此外,远程转染确保了递送到细胞中的基因的一致和稳健表达,有利于分子和生化研究。远程转染代表了神经生物学的重大进展,有望超越当前基因传递方法的局限性。它为研究人员提供了一种用户友好、经济高效且可重复的方法,可能会彻底改变我们对大脑功能和发育的理解。
Acta Biomater. 2018-11-29
Eur J Pharm Biopharm. 2019-6-17
Int J Nanomedicine. 2011-4-6
ACS Appl Mater Interfaces. 2015-3-11
Front Bioeng Biotechnol. 2021-7-20
Arterioscler Thromb Vasc Biol. 2021-5-5
Chemistry. 2021-5-12