Yuan Dao-Fu, Liu Yang, Trabelsi Tarek, Zhang Yue-Rou, Li Jun, Francisco Joseph S, Guo Hua, Wang Lai-Sheng
Hefei National Research Center for Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, China.
Department of Chemistry, Brown University, Providence, RI 02912.
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2314819121. doi: 10.1073/pnas.2314819121. Epub 2024 Jan 29.
SO (Sulfur dioxide) is the major precursor to the production of sulfuric acid (HSO), contributing to acid rain and atmospheric aerosols. Sulfuric acid formed from SO generates light-reflecting sulfate aerosol particles in the atmosphere. This property has prompted recent geoengineering proposals to inject sulfuric acid or its precursors into the Earth's atmosphere to increase the planetary albedo to counteract global warming. SO oxidation in the atmosphere by the hydroxyl radical HO to form HOSO is a key rate-limiting step in the mechanism for forming acid rain. However, the dynamics of the HO + SO → HOSO reaction and its slow rate in the atmosphere are poorly understood to date. Herein, we use photoelectron spectroscopy of cryogenically cooled HOSO anion to access the neutral HOSO radical near the transition state of the HO + SO reaction. Spectroscopic and dynamic calculations are conducted on the first ab initio-based full-dimensional potential energy surface to interpret the photoelectron spectra of HOSO and to probe the dynamics of the HO + SO reaction. In addition to the finding of a unique pre-reaction complex (HO⋯SO) directly connected to the transition state, dynamic calculations reveal that the accessible phase space for the HO + SO → HOSO reaction is extremely narrow, forming a key reaction bottleneck and slowing the reaction rate in the atmosphere, despite the low reaction barrier. This study underlines the importance of understanding the full multidimensional potential energy surface to elucidate the dynamics of complex bimolecular reactions involving polyatomic reactants.
二氧化硫(SO)是硫酸(H₂SO₄)生成的主要前体物质,会导致酸雨和大气气溶胶的形成。由SO形成的硫酸在大气中产生反光的硫酸盐气溶胶颗粒。这一特性促使最近有地球工程提议向地球大气中注入硫酸或其前体物质,以提高行星反照率来对抗全球变暖。大气中SO被羟基自由基HO氧化形成HOSO是酸雨形成机制中的一个关键限速步骤。然而,迄今为止,人们对HO + SO → HOSO反应的动力学及其在大气中的缓慢速率了解甚少。在此,我们使用低温冷却的HOSO阴离子的光电子能谱来获取HO + SO反应过渡态附近的中性HOSO自由基。基于第一性原理的全维势能面进行了光谱和动力学计算,以解释HOSO的光电子能谱并探究HO + SO反应的动力学。除了发现一个直接连接到过渡态的独特预反应复合物(HO⋯SO)外,动力学计算还表明,尽管反应势垒较低,但HO + SO → HOSO反应可及的相空间极其狭窄,形成了一个关键的反应瓶颈并减缓了大气中的反应速率。这项研究强调了理解完整的多维势能面对于阐明涉及多原子反应物的复杂双分子反应动力学的重要性。