Suppr超能文献

Enhanced oxidation of organic pollutants by regulating the interior reaction region of reactive electrochemical membranes.

作者信息

Di Yuting, Gu Zhenao, Kang Yuyang, Tian Jiayu, Hu Chengzhi

机构信息

School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Beijing 100085, China.

出版信息

J Hazard Mater. 2024 Mar 15;466:133584. doi: 10.1016/j.jhazmat.2024.133584. Epub 2024 Jan 22.

Abstract

Reactive electrochemical membrane (REM) emerges as an attractive strategy for the elimination of refractory organic pollutants that exist in wastewater. However, the limited reaction sites in traditional REMs greatly hinder its practical application. Herein, a feed-through coating methodology was developed to realize the uniform loading of SnO-Sb catalysts on the interior surface of a REM. The uniformly coated REM (Unif-REM) exhibited 2.4 times higher reaction kinetics (0.29 min) than that of surface coated REM (Surf-REM) for the degradation of 2 mM 4-chlorophenol (4-CP), rendering an energy consumption as low as 0.016 kWh g. The fast degradation of various emerging contaminants, e.g., sulfamethoxazole (SMX), ofloxacin (OFLX), and tetracycline (TC), also confirms its superior oxidation capability. Besides, the Unif-REM exhibited good performance in generating hydroxyl radicals (•OH) and a relatively long service lifetime. The simulation of spatial current distribution demonstrates that the interior reaction region in the Unif-REM channels can be drastically extended, thereby maximizing the surface coupling of mass diffusion and electron transfer. This study offers an in-depth look at the spatially confined reactions in REM and provides a reference for the design of electrochemical systems with economically efficient water purification.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验