Suppr超能文献

解析温度诱导的纤维素表面水结构以实现环境与能源可持续性

Elucidation of temperature-induced water structuring on cellulose surfaces for environmental and energy sustainability.

作者信息

Barrios Nelson, Parra José G, Venditti Richard A, Pal Lokendra

机构信息

Department of Forest Biomaterials, NC State University, 431 Dan Allen Drive, Campus Box 8005, Raleigh, NC 27695-8005, USA.

Department of Forest Biomaterials, NC State University, 431 Dan Allen Drive, Campus Box 8005, Raleigh, NC 27695-8005, USA; Universidad de Carabobo, Facultad Experimental de Ciencias y Tecnología, Dpto. De Química, Lab. De Química Computacional (QUIMICOMP), Edificio de Química, Avenida Salvador Allende, Bárbula, Venezuela.

出版信息

Carbohydr Polym. 2024 Apr 1;329:121799. doi: 10.1016/j.carbpol.2024.121799. Epub 2024 Jan 11.

Abstract

Optimizing drying energy in the forest products industry is critical for integrating lignocellulosic feedstocks across all manufacturing sectors. Despite substantial efforts to reduce thermal energy consumption during drying, further enhancements are possible. Cellulose, the main component of forest products, is Earth's most abundant biopolymer and a promising renewable feedstock. This study employs all-atom molecular dynamics (MD) simulations to explore the structural dynamics of a small I-cellulose microcrystallite and surrounding water layers during drying. Molecular and atomistic profiles revealed localized water near the cellulose surface, with water structuring extending beyond 8 Å into the water bulk, influencing solvent-accessible surface area and solvation energy. With increasing temperature, there was a ∼20 % reduction in the cellulose surface available for interaction with water molecules, and a ∼22 % reduction in solvation energy. The number of hydrogen bonds increased with thicker water layers, facilitated by a "bridging" effect. Electrostatic interactions dominated the intermolecular interactions at all temperatures, creating an energetic barrier that hinders water removal, slowing the drying processes. Understanding temperature-dependent cellulose-water interactions at the molecular level will help in designing novel strategies to address drying energy consumption, advancing the adoption of lignocellulosics as viable manufacturing feedstocks.

摘要

优化林产品行业的干燥能源对于将木质纤维素原料整合到所有制造部门至关重要。尽管在干燥过程中为降低热能消耗付出了巨大努力,但仍有进一步提升的空间。纤维素是林产品的主要成分,是地球上最丰富的生物聚合物,也是一种很有前景的可再生原料。本研究采用全原子分子动力学(MD)模拟来探索小尺寸I型纤维素微晶及其周围水层在干燥过程中的结构动力学。分子和原子尺度的分析揭示了纤维素表面附近的局部水,水的结构延伸到本体水中超过8 Å,影响溶剂可及表面积和溶剂化能。随着温度升高,可与水分子相互作用的纤维素表面减少了约20%,溶剂化能降低了约22%。氢键数量随着水层变厚而增加,这得益于“桥连”效应。在所有温度下,静电相互作用主导分子间相互作用,形成了阻碍水分去除的能量屏障,减缓了干燥过程。在分子水平上理解温度依赖性纤维素-水相互作用将有助于设计新策略来解决干燥能源消耗问题,推动木质纤维素作为可行的制造原料的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验