Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, USA.
J Phys Chem B. 2010 Oct 28;114(42):13333-41. doi: 10.1021/jp106452m.
Biomass recalcitrance is a fundamental bottleneck to producing fuels from renewable sources. To understand its molecular origin, we characterize the interaction network and solvation structures of cellulose microfibrils via all-atom molecular dynamics simulations. The network is divided into three components: intrachain, interchain, and intersheet interactions. Analysis of their spatial dependence and interaction energetics indicate that intersheet interactions are the most robust and strongest component and do not display a noticeable dependence on solvent exposure. Conversely, the strength of surface-exposed intrachain and interchain hydrogen bonds is significantly reduced. Comparing the interaction networks of I(β) and I(α) cellulose also shows that the number of intersheet interactions is a clear descriptor that distinguishes the two allomorphs and is consistent with the observation that I(β) is the more stable form. These results highlight the dominant role of the often-overlooked intersheet interactions in giving rise to biomass recalcitrance. We also analyze the solvation structures around the surfaces of microfibrils and show that the structural and chemical features at cellulose surfaces constrict water molecules into specific density profiles and pair correlation functions. Calculations of water density and compressibility in the hydration shell show noticeable but not drastic differences. Therefore, specific solvation structures are more prominent signatures of different surfaces.
生物质的抗降解性是从可再生资源中生产燃料的一个基本瓶颈。为了了解其分子起源,我们通过全原子分子动力学模拟对纤维素微纤维的相互作用网络和溶剂化结构进行了表征。该网络分为三个组成部分:链内、链间和层间相互作用。对它们的空间依赖性和相互作用能的分析表明,层间相互作用是最稳定和最强的组成部分,并且不受溶剂暴露的明显影响。相反,表面暴露的链内和链间氢键的强度显著降低。比较 I(β)和 I(α)纤维素的相互作用网络还表明,层间相互作用的数量是区分这两种同素异形物的一个明显描述符,这与 I(β)是更稳定形式的观察结果一致。这些结果突出了经常被忽视的层间相互作用在导致生物质抗降解性方面的主导作用。我们还分析了微纤维表面周围的溶剂化结构,并表明纤维素表面的结构和化学特征将水分子约束在特定的密度分布和对关联函数中。在水合壳中计算水的密度和压缩性显示出明显但不剧烈的差异。因此,特定的溶剂化结构是不同表面的更显著特征。