Chen Ting, Wang Jinlu, Li Xinlv, Chen Yuwei, Liu Shaochen, Liu Zhihong, You Qingliang, Liu Xueqing, Chen Feng, Liu Jiyan
Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056, China.
Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China.
Carbohydr Polym. 2024 Apr 1;329:121803. doi: 10.1016/j.carbpol.2024.121803. Epub 2024 Jan 12.
The combination of transparency, high dielectric permittivity, biocompatibility and flexibility is highly desired in the embedded capacitors. Herein, we show that assembling biodegradable sodium carboxymethyl cellulose (CMC) microfibers in biocompatible silicon elastomer (PDMS) under direct current (DC) electric field enables the production of high dielectric constant composite film with above desired properties. This process leads to the formation of columns of CMC microfibers spanning across the thickness direction, thus generating microfiber depleted regions in between fibers and polymer matrix. The as-prepared composite film with CMC (15 wt%) aligned exhibits a remarkable and an almost sevenfold higher dielectric permittivity as compared to that of the film with CMC randomly dispersed (72 vs 11.4, at 100 Hz). This high CMC loading does not compromise the flexibility and optical transmittance. Interestingly, the compression modulus along the thickness direction increases by >20 times from 16.4 MPa (CMC unaligned) to 339.9 MPa (CMC aligned). We demonstrate a facile strategy of fabricating high dielectric materials combining transparency, biocompatibility, flexibility and compression resistant, making the dielectric materials more versatile. This work shows that biomass derived CMC is a promising filler for high dielectric constant polymer composites benefiting from electric field driven construction of ordered micromorphology.
嵌入式电容器非常需要兼具透明度、高介电常数、生物相容性和柔韧性。在此,我们表明,在直流(DC)电场下将可生物降解的羧甲基纤维素钠(CMC)微纤维组装在生物相容性硅弹性体(PDMS)中,能够制备出具有上述所需性能的高介电常数复合薄膜。这一过程导致形成横跨厚度方向的CMC微纤维柱,从而在纤维与聚合物基体之间产生微纤维贫化区域。与CMC随机分散的薄膜相比,所制备的含15 wt% CMC且排列有序的复合薄膜在100 Hz时表现出显著且几乎高出七倍的介电常数(分别为72和11.4)。这种高CMC负载量并未损害柔韧性和光学透过率。有趣的是,沿厚度方向的压缩模量从16.4 MPa(CMC未排列)增加到339.9 MPa(CMC排列),增加了20倍以上。我们展示了一种制备兼具透明度、生物相容性、柔韧性和抗压性的高介电材料的简便策略,使介电材料具有更多用途。这项工作表明,源自生物质的CMC是一种有前途的高介电常数聚合物复合材料填料,受益于电场驱动的有序微观形态构建。