Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
London BioFoundry, Imperial College Translation & Innovation Hub, White City Campus, 84 Wood Lane, London, W12 0BZ, UK.
Sci Rep. 2024 Jan 29;14(1):2377. doi: 10.1038/s41598-024-52049-9.
Leveraging riboswitches, non-coding mRNA fragments pivotal to gene regulation, poses a challenge in effectively selecting and enriching these functional genetic sensors, which can toggle between ON and OFF states in response to their cognate inducers. Here, we show our engineered phage T7, enabling the evolution of a theophylline riboswitch. We have replaced T7's DNA polymerase with a transcription factor controlled by a theophylline riboswitch and have created two types of host environments to propagate the engineered phage. Both types host an error-prone T7 DNA polymerase regulated by a T7 promoter along with another critical gene-either cmk or pifA, depending on the host type. The cmk gene is necessary for T7 replication and is used in the first host type for selection in the riboswitch's ON state. Conversely, the second host type incorporates the pifA gene, leading to abortive T7 infections and used for selection in the riboswitch's OFF state. This dual-selection system, termed T7AE, was then applied to a library of 65,536 engineered T7 phages, each carrying randomized riboswitch variants. Through successive passage in both host types with and without theophylline, we observed an enrichment of phages encoding functional riboswitches that conferred a fitness advantage to the phage in both hosts. The T7AE technique thereby opens new pathways for the evolution and advancement of gene switches, including non-coding RNA-based switches, setting the stage for significant strides in synthetic biology.
利用核糖开关,即对基因调控至关重要的非编码 mRNA 片段,在有效选择和富集这些功能遗传传感器方面带来了挑战,这些传感器可以在其同源诱导物的作用下在 ON 和 OFF 状态之间切换。在这里,我们展示了经过工程改造的噬菌体 T7,使其能够进化出茶碱核糖开关。我们已经用受茶碱核糖开关控制的转录因子替代了 T7 的 DNA 聚合酶,并创建了两种类型的宿主环境来繁殖工程噬菌体。这两种类型的宿主都含有易错的 T7 DNA 聚合酶,该聚合酶受 T7 启动子的调控,同时还含有另一个关键基因——cmk 或 pifA,具体取决于宿主类型。cmk 基因是 T7 复制所必需的,在第一种宿主类型中用于在核糖开关的 ON 状态下进行选择。相反,第二种宿主类型包含 pifA 基因,导致 T7 感染失败,并用于在核糖开关的 OFF 状态下进行选择。这种双重选择系统,称为 T7AE,随后被应用于一个由 65536 个经过工程改造的 T7 噬菌体组成的文库,每个噬菌体都携带随机化的核糖开关变体。通过在有和没有茶碱的两种宿主类型中连续传代,我们观察到编码功能核糖开关的噬菌体富集,这使噬菌体在两种宿主中都具有适应性优势。因此,T7AE 技术为基因开关的进化和发展开辟了新途径,包括基于非编码 RNA 的开关,为合成生物学的重大进展奠定了基础。