Li Chunsong, Zhang Haochen, Liu Wenxuan, Sheng Lin, Cheng Mu-Jeng, Xu Bingjun, Luo Guangsheng, Lu Qi
State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, China.
Department of Chemistry, National Cheng Kung University, Tainan, Taiwan.
Nat Commun. 2024 Jan 29;15(1):884. doi: 10.1038/s41467-024-45179-1.
The oxidative dehydrogenation of propane, primarily sourced from shale gas, holds promise in meeting the surging global demand for propylene. However, this process necessitates high operating temperatures, which amplifies safety concerns in its application due to the use of mixed propane and oxygen. Moreover, these elevated temperatures may heighten the risk of overoxidation, leading to carbon dioxide formation. Here we introduce a microchannel reaction system designed for the oxidative dehydrogenation of propane within an aqueous environment, enabling highly selective and active propylene production at room temperature and ambient pressure with mitigated safety risks. A propylene selectivity of over 92% and production rate of 19.57 mmol m h are simultaneously achieved. This exceptional performance stems from the in situ creation of a highly active, oxygen-containing Cu catalytic surface for propane activation, and the enhanced propane transfer via an enlarged gas-liquid interfacial area and a reduced diffusion path by establishing a gas-liquid Taylor flow using a custom-made T-junction microdevice. This microchannel reaction system offers an appealing approach to accelerate gas-liquid-solid reactions limited by the solubility of gaseous reactant.
主要来源于页岩气的丙烷氧化脱氢,有望满足全球对丙烯不断飙升的需求。然而,该过程需要较高的操作温度,由于使用丙烷和氧气的混合物,这在其应用中增加了安全隐患。此外,这些高温可能会增加过度氧化的风险,导致二氧化碳的形成。在此,我们介绍一种微通道反应系统,该系统设计用于在水性环境中进行丙烷氧化脱氢,能够在室温和常压下实现高选择性和活性的丙烯生产,同时降低安全风险。丙烯选择性超过92%,生产率达到19.57 mmol m h。这种卓越的性能源于原位生成用于丙烷活化的高活性含氧化铜催化表面,以及通过使用定制的T型结微器件建立气液泰勒流,扩大气液界面面积并缩短扩散路径,从而增强丙烷传输。这种微通道反应系统为加速受气态反应物溶解度限制的气液固反应提供了一种有吸引力的方法。