Paul Scherrer Institute, 5232 Villigen, Switzerland.
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
J Am Chem Soc. 2023 Apr 12;145(14):7910-7917. doi: 10.1021/jacs.2c12970. Epub 2023 Mar 3.
Oxidative dehydrogenation of propane (ODHP) is an emerging technology to meet the global propylene demand with boron nitride (BN) catalysts likely to play a pivotal role. It is widely accepted that gas-phase chemistry plays a fundamental role in the BN-catalyzed ODHP. However, the mechanism remains elusive because short-lived intermediates are difficult to capture. We detect short-lived free radicals (CH, CH) and reactive oxygenates, C ketenes and C enols, in ODHP over BN by synchrotron photoelectron photoion coincidence spectroscopy. In addition to a surface-catalyzed channel, we identify a gas-phase H-acceptor radical- and H-donor oxygenate-driven route, leading to olefin production. In this route, partially oxidized enols propagate into the gas phase, followed by dehydrogenation (and methylation) to form ketenes and finally yield olefins by decarbonylation. Quantum chemical calculations predict the >BO dangling site to be the source of free radicals in the process. More importantly, the easy desorption of oxygenates from the catalyst surface is key to prevent deep oxidation to CO.
丙烷的氧化脱氢(ODHP)是一种新兴技术,用于满足全球对丙烯的需求,氮化硼(BN)催化剂可能在其中发挥关键作用。人们普遍认为,气相化学在 BN 催化的 ODHP 中起着基础性作用。然而,由于难以捕获短寿命中间体,其反应机理仍然难以捉摸。我们通过同步辐射光电子光离子符合光谱法在 BN 上的 ODHP 中检测到短寿命自由基(CH、CH)和反应性含氧物、C 烯酮和 C 烯醇。除了表面催化途径外,我们还确定了一条由 H-受体自由基和 H-给体含氧物驱动的气相途径,导致烯烃的生成。在这条途径中,部分氧化的烯醇进入气相,然后脱氢(和甲基化)形成烯酮,最后通过脱羰形成烯烃。量子化学计算预测,>BO 悬挂键是该过程中自由基的来源。更重要的是,含氧物从催化剂表面的易于解吸是防止深度氧化为 CO 的关键。