Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Nat Rev Cancer. 2024 Mar;24(3):192-215. doi: 10.1038/s41568-023-00658-3. Epub 2024 Jan 29.
Inactivation of the most important tumour suppressor gene TP53 occurs in most, if not all, human cancers. Loss of functional wild-type p53 is achieved via two main mechanisms: mutation of the gene leading to an absence of tumour suppressor activity and, in some cases, gain-of-oncogenic function; or inhibition of the wild-type p53 protein mediated by overexpression of its negative regulators MDM2 and MDMX. Because of its high potency as a tumour suppressor and the dependence of at least some established tumours on its inactivation, p53 appears to be a highly attractive target for the development of new anticancer drugs. However, p53 is a transcription factor and therefore has long been considered undruggable. Nevertheless, several innovative strategies have been pursued for targeting dysfunctional p53 for cancer treatment. In mutant p53-expressing tumours, the predominant strategy is to restore tumour suppressor function with compounds acting either in a generic manner or otherwise selective for one or a few specific p53 mutations. In addition, approaches to deplete mutant p53 or to target vulnerabilities created by mutant p53 expression are currently under development. In wild-type p53 tumours, the major approach is to protect p53 from the actions of MDM2 and MDMX by targeting these negative regulators with inhibitors. Although the results of at least some clinical trials of MDM2 inhibitors and mutant p53-restoring compounds are promising, none of the agents has yet been approved by the FDA. Alternative strategies, based on a better understanding of p53 biology, the mechanisms of action of compounds and treatment regimens as well as the development of new technologies are gaining interest, such as proteolysis-targeting chimeras for MDM2 degradation. Other approaches are taking advantage of the progress made in immune-based therapies for cancer. In this Review, we present these ongoing clinical trials and emerging approaches to re-evaluate the current state of knowledge of p53-based therapies for cancer.
在大多数(如果不是全部)人类癌症中,最重要的肿瘤抑制基因 TP53 失活。功能正常的野生型 p53 的丧失是通过两种主要机制实现的:基因突变导致肿瘤抑制活性缺失,在某些情况下获得致癌功能;或通过过度表达其负调节剂 MDM2 和 MDMX 抑制野生型 p53 蛋白。由于其作为肿瘤抑制因子的高效力,以及至少一些已建立的肿瘤对其失活的依赖,p53 似乎是开发新抗癌药物的极具吸引力的靶标。然而,p53 是一种转录因子,因此长期以来被认为是不可成药的。尽管如此,人们还是采用了几种创新策略来靶向功能失调的 p53 进行癌症治疗。在表达突变型 p53 的肿瘤中,主要策略是用作用于一般方式或针对一种或几种特定 p53 突变具有选择性的化合物来恢复肿瘤抑制功能。此外,目前正在开发消除突变型 p53 或针对突变型 p53 表达产生的脆弱性的方法。在野生型 p53 肿瘤中,主要方法是通过用抑制剂靶向这些负调节剂来保护 p53 免受 MDM2 和 MDMX 的作用。尽管至少一些 MDM2 抑制剂和突变型 p53 恢复化合物的临床试验结果令人鼓舞,但没有一种药物已被 FDA 批准。基于对 p53 生物学、化合物作用机制和治疗方案的更好理解以及新技术的发展的替代策略正在引起关注,例如用于 MDM2 降解的蛋白水解靶向嵌合体。其他方法正在利用癌症免疫治疗方面的进展。在这篇综述中,我们介绍了这些正在进行的临床试验和新兴方法,以重新评估基于 p53 的癌症治疗的当前知识状态。