Krishnaraj Jayaraman, Yamamoto Tatsuki, Ohki Rieko
Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-ku, Tokyo 104-0045, Japan.
Cancers (Basel). 2023 Jun 28;15(13):3399. doi: 10.3390/cancers15133399.
Resistance to chemoradiotherapy is the main cause of cancer treatment failure. Cancer cells, especially cancer stem cells, utilize innate cytoprotective mechanisms to protect themselves from the adverse effects of chemoradiotherapy. Here, we describe a few such mechanisms: DNA damage response (DDR), immediate early response gene 5 (IER5)/heat-shock factor 1 (HSF1) pathway, and p21/nuclear factor erythroid 2-related factor 2 (NRF2) pathway, which are regulated by the tumour suppressor p53. Upon DNA damage caused during chemoradiotherapy, p53 is recruited to the sites of DNA damage and activates various DNA repair enzymes including GADD45A, p53R2, DDB2 to repair damaged-DNA in cancer cells. In addition, the p53-IER5-HSF1 pathway protects cancer cells from proteomic stress and maintains cellular proteostasis. Further, the p53-p21-NRF2 pathway induces production of antioxidants and multidrug resistance-associated proteins to protect cancer cells from therapy-induced oxidative stress and to promote effusion of drugs from the cells. This review summarises possible roles of these p53-regulated cytoprotective mechanisms in the resistance to chemoradiotherapy.
放化疗耐药是癌症治疗失败的主要原因。癌细胞,尤其是癌症干细胞,利用固有的细胞保护机制来保护自身免受放化疗的不利影响。在此,我们描述几种这样的机制:DNA损伤反应(DDR)、即刻早期反应基因5(IER5)/热休克因子1(HSF1)途径以及p21/核因子红细胞2相关因子2(NRF2)途径,这些途径受肿瘤抑制因子p53调控。在放化疗过程中引起DNA损伤时,p53被招募到DNA损伤位点,并激活包括GADD45A、p53R2、DDB2在内的各种DNA修复酶,以修复癌细胞中受损的DNA。此外,p53-IER5-HSF1途径保护癌细胞免受蛋白质组应激并维持细胞蛋白质稳态。此外,p53-p21-NRF2途径诱导抗氧化剂和多药耐药相关蛋白的产生,以保护癌细胞免受治疗诱导的氧化应激,并促进药物从细胞中流出。本综述总结了这些p53调控的细胞保护机制在放化疗耐药中的可能作用。