Department of Pharmacy, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 201108 Shanghai, China.
Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, 201108 Shanghai, China.
J Integr Neurosci. 2024 Jan 11;23(1):6. doi: 10.31083/j.jin2301006.
Metformin has been shown to have potent analgesic effects; however, the underlying mechanism of synaptic plasticity mediating analgesia remained ambiguous.
In this study, animal behavioral tests, whole-cell patch‑clamp recording, immunofluorescence staining, and network pharmacology techniques were applied to elucidate the mechanisms and potential targets of metformin-induced analgesia.
Single or consecutive injections of metformin significantly inhibited spinal nerve ligation (SNL)-induced neuropathic pain, and formalin-induced acute inflammatory pain. Network pharmacology analysis of metformin action targets in pain database-related targets revealed 25 targets, including five hub targets (nitric oxide synthase 1 (NOS1), NOS2, NOS3, epidermal growth factor receptor (EGFR), and plasminogen (PLG)). Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that metformin-induced analgesia was markedly correlated with calcium signaling and synaptic transmission. Intrathecal injection of metformin significantly reversed nerve injury-induced c-Fos (neural activity biomarker) mRNA and protein expression in neuropathic rats by regulating NOS2 expression. In addition, whole-cell recordings of isolated spinal neurons demonstrated that metformin dose-dependently inhibited the enhanced frequency and amplitude of miniature excitatory synaptic currents (mEPSCs) but did not affect those of miniature inhibitory synaptic currents (mIPSCs) in neuropathic pain.
This study further demonstrated that metformin might inhibit spinal glutamatergic transmission and abnormal nociceptive circuit transduction by monitoring synaptic transmission in pain. Results of this work provide an in-depth understanding of metformin analgesia via synaptic plasticity.
二甲双胍已被证明具有很强的镇痛作用;然而,介导镇痛的突触可塑性的潜在机制仍不清楚。
在这项研究中,应用动物行为学测试、全细胞膜片钳记录、免疫荧光染色和网络药理学技术,阐明了二甲双胍诱导镇痛的机制和潜在靶点。
单次或连续注射二甲双胍可显著抑制脊神经结扎(SNL)诱导的神经性疼痛和福尔马林诱导的急性炎症性疼痛。在与疼痛数据库相关靶点的二甲双胍作用靶点的网络药理学分析中,发现了 25 个靶点,包括 5 个枢纽靶点(一氧化氮合酶 1(NOS1)、NOS2、NOS3、表皮生长因子受体(EGFR)和纤溶酶原(PLG))。京都基因与基因组百科全书(KEGG)分析表明,二甲双胍诱导的镇痛与钙信号和突触传递明显相关。鞘内注射二甲双胍可显著逆转神经损伤诱导的神经病理性大鼠 c-Fos(神经活动生物标志物)mRNA 和蛋白表达,调节 NOS2 表达。此外,离体脊髓神经元的全细胞膜片钳记录表明,二甲双胍可剂量依赖性地抑制神经病理性疼痛中小型兴奋性突触电流(mEPSC)的增强频率和幅度,但不影响小型抑制性突触电流(mIPSC)。
本研究进一步表明,二甲双胍可能通过监测疼痛中的突触传递来抑制脊髓谷氨酸能传递和异常伤害性电路转导。这项工作的结果提供了对通过突触可塑性实现二甲双胍镇痛的深入了解。