Suppr超能文献

高温下用于锂离子电池阳极的再生球形纤维素衍生碳

Carbons Derived from Regenerated Spherical Cellulose as Anodes for Li-Ion Batteries at Elevated Temperatures.

作者信息

Fischer Johanna, Wolfram Lisa, Oswald Steffen, Fischer Steffen, Mikhailova Daria

机构信息

Leibniz Institute for Solid State and Material Research (IFW) Dresden e.V., Institut for Materials Chemistry (IMC), Helmholtzstraße 20, 01069, Dresden, Germany.

TUD Dresden University of Technology, Institut of plant and wood chemistry (IPWC), Pienner Straße 19, 01737, Tharandt, Germany.

出版信息

Chemphyschem. 2024 Apr 16;25(8):e202300833. doi: 10.1002/cphc.202300833. Epub 2024 Feb 15.

Abstract

Biomass-based materials have emerged as a promising alternative to the conventional graphite anode in Li-ion batteries due to their renewability, low cost, and environmental friendliness. Therefore, a facile synthesis method for porous hard carbons based on cellulose acetate microspheres and bead cellulose is used, and their application as anode materials in Li-ion batteries is discussed. The resulting porous carbons exhibit promising electrochemical characteristics, including a reversible capacity of about 300 mAh g at 0.1 C (37 mA g) after 50 cycles, and stable capacities up to 210 mAh g over 1000 cycles at 1 C (372 mA g) in half-cells for cellulose acetate microspheres carbonised at 1200 °C. Moreover, at 60 °C cellulose-derived carbons show higher specific capacities than graphite (300 mAh g vs 240 mAh g at 1 C after 500 cycles), indicating their potential for use in high-temperature applications. The different charge storage mechanisms of the prepared hard carbon materials and graphite are observed. While capacity of graphite is mainly controlled by the Faradaic redox process, the cellulose-derived carbons combine Faradaic intercalation and capacitive charge adsorption.

摘要

基于生物质的材料因其可再生性、低成本和环境友好性,已成为锂离子电池中传统石墨负极的一种有前途的替代品。因此,采用了一种基于醋酸纤维素微球和珠状纤维素的多孔硬碳简便合成方法,并讨论了它们作为锂离子电池负极材料的应用。所得多孔碳表现出有前景的电化学特性,包括在0.1 C(37 mA g)下50次循环后约300 mAh g的可逆容量,以及在1 C(372 mA g)下1000次循环中高达210 mAh g的稳定容量,对于在1200°C碳化的醋酸纤维素微球半电池而言。此外,在60°C时,纤维素衍生的碳比石墨表现出更高的比容量(500次循环后在1 C下为300 mAh g对240 mAh g),表明它们在高温应用中的潜力。观察到所制备的硬碳材料和石墨的不同电荷存储机制。虽然石墨的容量主要由法拉第氧化还原过程控制,但纤维素衍生的碳结合了法拉第嵌入和电容性电荷吸附。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验