Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan.
Northville High School, Northville, Michigan.
Clin Cancer Res. 2024 Apr 1;30(7):1397-1408. doi: 10.1158/1078-0432.CCR-23-3062.
The pharmacokinetics of intrathecally administered antibody or small-molecule drugs in the human central nervous system (CNS) remains poorly understood. This study aimed to provide mechanistic and quantitative perspectives on the CNS pharmacokinetics of intrathecal chemotherapy, by using a physiologically based pharmacokinetic (PBPK) modeling approach.
A novel CNS PBPK model platform was developed and verified, which accounted for the human CNS general anatomy and physiologic processes governing drug distribution and disposition. The model was used to predict CNS pharmacokinetics of antibody (trastuzumab) and small-molecule drugs (methotrexate, abemaciclib, tucatinib) following intraventricular injection or intraventricular 24-hour infusion, and to assess the key determinants of drug penetration into the deep brain parenchyma.
Intraventricularly administered antibody and small-molecule drugs exhibited distinct temporal and spatial distribution and disposition in human CNS. Both antibody and small-molecule drugs achieved supratherapeutic or therapeutic concentrations in the cerebrospinal fluid (CSF) compartments and adjacent brain tissue. While intrathecal small-molecule drugs penetrated the deep brain parenchyma to a negligible extent, intrathecal antibodies may achieve therapeutic concentrations in the deep brain parenchyma. Intraventricular 24-hour infusion enabled prolonged CNS exposure to therapeutically relevant concentrations while avoiding excessively high and potentially neurotoxic drug concentrations.
CNS PBPK modeling, in line with available clinical efficacy data, confirms the therapeutic value of intrathecal chemotherapy with antibody or small-molecule drugs for treating neoplastic meningitis and warrants further clinical investigation of intrathecal antibody drugs to treat brain parenchyma tumors. Compared with intraventricular injection, intraventricular 24-hour infusion may mitigate neurotoxicity while retaining potential efficacy.
鞘内给予抗体或小分子药物在人体中枢神经系统(CNS)中的药代动力学仍知之甚少。本研究旨在通过使用基于生理学的药代动力学(PBPK)建模方法,为鞘内化疗的CNS 药代动力学提供机制和定量的观点。
开发并验证了一种新型的 CNS PBPK 模型平台,该平台考虑了人类 CNS 的一般解剖结构和控制药物分布和处置的生理过程。该模型用于预测脑室注射或脑室 24 小时输注后抗体(曲妥珠单抗)和小分子药物(甲氨蝶呤、阿贝西利、图卡替尼)的 CNS 药代动力学,并评估药物穿透深部脑实质的关键决定因素。
脑室给予的抗体和小分子药物在人体 CNS 中表现出不同的时间和空间分布和处置。抗体和小分子药物在脑脊液(CSF)隔室和相邻脑组织中均达到治疗或超治疗浓度。虽然鞘内小分子药物几乎不能穿透深部脑实质,但鞘内抗体可能在深部脑实质中达到治疗浓度。脑室 24 小时输注可使 CNS 长时间暴露于治疗相关浓度,同时避免过高和潜在的神经毒性药物浓度。
CNS PBPK 建模与现有临床疗效数据一致,证实了用抗体或小分子药物进行鞘内化疗治疗恶性脑膜炎的治疗价值,并进一步证明了鞘内抗体药物治疗脑实质肿瘤的临床研究价值。与脑室注射相比,脑室 24 小时输注可能减轻神经毒性,同时保留潜在的疗效。