College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
J Environ Manage. 2024 Feb 27;353:120210. doi: 10.1016/j.jenvman.2024.120210. Epub 2024 Jan 30.
Design and synthesis of high-efficiency multicomponent nanostructure for activating peroxymonosulfate (PMS) to destruct emerging antibiotics remains a daunting challenge. We report herein the simplest one-step hydrothermal construction of hierarchical Fe/FeO@MoS architecture composed of MoS nanosheets integrated commercial FeO nanoparticles. The fabricated Fe/FeO@MoS architecture can be utilized as an efficient PMS activator to destruct tetracycline hydrochloride (TCH) with a removal efficiency of 90.3 % within 40 min, outperforming FeO nanoparticles, MoS nanosheets analogues and many MoS-based materials. The Fe/FeO@MoS/PMS works well under various reaction conditions, and SO and O are identified as major reactive oxygen species. Thirteen intermediates towards TCH destruction are detected via four pathways, and their acute/chronic toxicity and phytotoxicity are assessed. The origins of Fe/FeO@MoS/PMS system for efficient degrading TCH are ascribed to the synergy catalysis between FeO and MoS, which originate from: (a) the exposed Mo sites on catalyst surface facilitating high-speed electron transfer from MoS to Fe and accelerating the Fe regeneration; (b) the generated Fe serving as an excellent electron donor to jointly promote Fe/Fe redox cycle. This study provides a simple way to establish architecture for synergistically promoting PMS-mediated degradation.
用于激活过一硫酸盐(PMS)以破坏新兴抗生素的高效多组分纳米结构的设计和合成仍然是一项艰巨的挑战。本文报道了一种最简单的一步水热法构建由 MoS 纳米片集成商业 FeO 纳米颗粒组成的分级 Fe/FeO@MoS 结构。所制备的 Fe/FeO@MoS 结构可用作高效的 PMS 活化剂,在 40 分钟内可有效去除盐酸四环素(TCH),去除效率达 90.3%,优于 FeO 纳米颗粒、MoS 纳米片类似物和许多基于 MoS 的材料。Fe/FeO@MoS/PMS 在各种反应条件下均能很好地发挥作用,并且鉴定出 SO 和 O 是主要的活性氧物质。通过四种途径检测到 TCH 破坏的 13 种中间体,并评估了它们的急性/慢性毒性和植物毒性。Fe/FeO@MoS/PMS 系统有效降解 TCH 的起源归因于 FeO 和 MoS 之间的协同催化作用,其源于:(a) 催化剂表面上暴露的 Mo 位点促进 MoS 向 Fe 的高速电子转移并加速 Fe 的再生;(b) 生成的 Fe 作为优良的电子供体共同促进 Fe/Fe 氧化还原循环。本研究为协同促进 PMS 介导的降解提供了一种简单的建立结构的方法。