The Jackson Laboratory, Bar Harbor, Maine 04609, USA;
The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
Genome Res. 2024 Feb 7;34(1):145-159. doi: 10.1101/gr.278157.123.
Hundreds of inbred mouse strains and intercross populations have been used to characterize the function of genetic variants that contribute to disease. Thousands of disease-relevant traits have been characterized in mice and made publicly available. New strains and populations including consomics, the collaborative cross, expanded BXD, and inbred wild-derived strains add to existing complex disease mouse models, mapping populations, and sensitized backgrounds for engineered mutations. The genome sequences of inbred strains, along with dense genotypes from others, enable integrated analysis of trait-variant associations across populations, but these analyses are hampered by the sparsity of genotypes available. Moreover, the data are not readily interoperable with other resources. To address these limitations, we created a uniformly dense variant resource by harmonizing multiple data sets. Missing genotypes were imputed using the Viterbi algorithm with a data-driven technique that incorporates local phylogenetic information, an approach that is extendable to other model organisms. The result is a web- and programmatically accessible data service called GenomeMUSter, comprising single-nucleotide variants covering 657 strains at 106.8 million segregating sites. Interoperation with phenotype databases, analytic tools, and other resources enable a wealth of applications, including multitrait, multipopulation meta-analysis. We show this in cross-species comparisons of type 2 diabetes and substance use disorder meta-analyses, leveraging mouse data to characterize the likely role of human variant effects in disease. Other applications include refinement of mapped loci and prioritization of strain backgrounds for disease modeling to further unlock extant mouse diversity for genetic and genomic studies in health and disease.
数百种近交系小鼠品系和杂交群体已被用于研究导致疾病的遗传变异的功能。数千种与疾病相关的特征已在小鼠中得到描述,并公开发布。新的品系和群体,包括 consomics、合作交叉、扩展 BXD 和近交野生衍生系,增加了现有的复杂疾病小鼠模型、映射群体和用于工程突变的敏感背景。近交系的基因组序列以及其他系的密集基因型,使人们能够在人群中对特征-变异关联进行综合分析,但这些分析受到可用基因型稀疏的限制。此外,这些数据与其他资源不易互操作。为了解决这些限制,我们通过协调多个数据集创建了一个统一密集的变体资源。使用基于 Viterbi 算法的技术对缺失的基因型进行了推断,该技术采用了一种数据驱动的方法,该方法结合了局部系统发育信息,这种方法可扩展到其他模式生物。结果是创建了一个名为 GenomeMUSter 的网络和可编程访问的数据服务,包含覆盖 657 个品系的 1.068 亿个分离位点的单核苷酸变体。与表型数据库、分析工具和其他资源的互操作性使许多应用成为可能,包括多特征、多群体荟萃分析。我们在 2 型糖尿病和物质使用障碍荟萃分析的跨物种比较中展示了这一点,利用小鼠数据来描述人类变异效应在疾病中的可能作用。其他应用包括映射基因座的细化和疾病建模的品系背景的优先级排序,以进一步释放现有小鼠多样性,用于健康和疾病的遗传和基因组研究。