Duraisamy Parimala Devi, S Prince Makarios Paul, Gopalan Praveena, Angamuthu Abiram
Department of Physical Sciences, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India.
Department of Physics, PSGR Krishnammal College for Women, Coimbatore, Tamil Nadu, 641004, India.
J Mol Model. 2024 Jan 31;30(2):55. doi: 10.1007/s00894-024-05847-x.
Boron-based nanostructures hold significant promise for revolutionizing hydrogen storage technologies due to their exceptional properties and potential in efficiently accommodating and interacting with hydrogen molecules. In this paper, boron-based B (n = 3-14) nanoclusters decorated with alkaline earth metals (AEM = Ca and Be) were investigated for hydrogen storage applications based on density function theory (DFT) calculations. To evaluate H adsorption capability, the adsorption energies, frontier molecular orbitals (FMOs), natural bond orbital (NBO), and quantum theory of atoms in molecule (QTAIM) analysis are performed. The primary aim of this research work is to achieve targeted value of 5.5 wt% set by the US Department of Energy (DOE) for the year 2025. The results revealed that BCa, BCa, and BCa structures have the ability to hold up to 12H molecules with gravimetric capacities of 15.20, 14.21, and 8.60 wt%, respectively, when compared to other boron structures decorated with calcium. Similarly, for Be-decorated structure, BBe structure can accommodate 3H molecules with gravimetric capacity of 10.59 wt%. The result of this study indicates that AEM-decorated B nanoclusters hold great promise as potential materials for hydrogen storage.
Density functional theory (DFT) approach at ωB97XD/6-311++G(d,p) level of theory is employed to investigate the possibility of storing H molecules on alkaline earth metal (AEM = Ca and Be)-decorated B (n = 3-14) nanoclusters. All DFT computations were performed using Gaussian 09 software. To calculate frontier molecular orbitals (FMOs) and quantum theory of atoms in molecule (QTAIM) analysis, we have used GaussView and Multiwfn software, respectively.
基于硼的纳米结构因其卓越的性能以及在有效容纳氢分子并与之相互作用方面的潜力,在革新储氢技术方面具有重大前景。在本文中,基于密度泛函理论(DFT)计算,研究了用碱土金属(AEM = Ca和Be)修饰的硼基B(n = 3 - 14)纳米团簇在储氢应用中的情况。为了评估氢吸附能力,进行了吸附能、前线分子轨道(FMO)、自然键轨道(NBO)以及分子中原子的量子理论(QTAIM)分析。这项研究工作的主要目标是达到美国能源部(DOE)为2025年设定的5.5 wt%的目标值。结果表明,与其他用钙修饰的硼结构相比,BCa、BCa和BCa结构分别能够容纳多达12个氢分子,重量容量分别为15.20、14.21和8.60 wt%。同样,对于用Be修饰的结构,BBe结构可以容纳3个氢分子,重量容量为10.59 wt%。这项研究的结果表明,用AEM修饰的B纳米团簇作为潜在的储氢材料具有很大的前景。
采用ωB97XD/6 - 311++G(d,p)理论水平的密度泛函理论(DFT)方法,研究在碱土金属(AEM = Ca和Be)修饰的B(n = 3 - 14)纳米团簇上储存氢分子的可能性。所有DFT计算均使用高斯09软件进行。为了计算前线分子轨道(FMO)和分子中原子的量子理论(QTAIM)分析,我们分别使用了GaussView和Multiwfn软件。