Suppr超能文献

BN 纳米结构的致癌性及其对恢复时间和抗肿瘤药物电子密度研究的影响。

Incrimination and impact on recovery times and effects of BN nanostructures on antineoplastic drug-electronic density study.

机构信息

Department of Physics, Birla Institute of Technology & Science, Pilani, Dubai Campus, United Arab Emirates.

出版信息

J Mol Model. 2024 Oct 9;30(11):372. doi: 10.1007/s00894-024-06167-w.

Abstract

CONTEXT

By delivering the drug to the intended cell location, the use of nanomaterials in the drug delivery system may influence how the patient receives the medication and may assist in mitigating severe side effects. Density functional theory was used to assess the use of boron carbon nitride nanocages (BNCNCs), boron nitride (BNNSs), and boron carbon nitride nanosheets (BNCNSs) as melphalan (Mln) drug carriers in both the gaseous and fluid phases. We systematically examined the dipole moment, density of states, frontier molecular orbital, and optimal adsorption energy to understand the targeted drug delivery potential of these nanostructures. Adsorption energy analysis revealed that in both gas and water media, Mln drug adsorption takes place spontaneously on all the conjugated structures. The occurrence of adsorption energy as physisorbed energy suggests that the process is reversible, and desorption can take place with a much lower energy input. This physical contact is appropriate for the unquestionable unloading of Mln medications to the intended location. The reactivity is higher in BNNSs and BNCNSs, while the stability is higher in BNCNCs. The recovery time shows a shorter time for BNNSs and BNCNSs, while BNCNC shows a potential desorption time in higher temperature. These conclusions are corroborated by the results of the quantum theory of atoms in molecules (QTAIM). After the interaction analysis, it was observed that the BNCNCs can act as potential carriers for the melphalan. From dipole moment analysis, all three nanostructures show a high hydrophilic nature but quite higher in BNCNCs after doping in both media. Overall, all the structures show the potential carrier for melphalan drug.

METHODS

The quantum mechanical approach, or DFT, has been used to study the fundamental structural, electrical, thermodynamic, and other aspects of proposed structures to develop an acceptable Mln drug detector. The adsorbate and all adsorbents were optimized via the hybrid B3LYP functional and the 6-311G +  + (2d, p) basis set approach prior to the adsorption process. The Gaussian 09 package was used at 298 K as the constant temperature and 1 atm as the constant pressure. The structures are examined using the same functional models for solvation analysis-6-311 G +  + (2d, p) and B3LYP-as well as the polarized continuum model (PCM) model as the foundation set. Density of states was studied using GaussSum 3.0 software. The interaction studies QTAIM and RDG were studied using VMD and Multiwfn software.

摘要

背景

通过将药物递送到预期的细胞位置,药物传递系统中纳米材料的使用可以影响患者接受药物的方式,并有助于减轻严重的副作用。密度泛函理论被用于评估硼碳氮纳米笼(BNCNCs)、氮化硼(BNNSs)和硼碳氮纳米片(BNCNSs)作为美法仑(Mln)药物载体在气相和液相中的应用。我们系统地研究了偶极矩、态密度、前沿分子轨道和最佳吸附能,以了解这些纳米结构的靶向药物传递潜力。吸附能分析表明,在气相和水相介质中,Mln 药物在所有共轭结构上都自发吸附。吸附能作为物理吸附能的存在表明该过程是可逆的,并且可以在较低的能量输入下发生解吸。这种物理接触非常适合将 Mln 药物毫不含糊地递送到预期的位置。BNNSs 和 BNCNSs 的反应性更高,而 BNCNCs 的稳定性更高。恢复时间表明 BNNSs 和 BNCNSs 的时间更短,而 BNCNC 在较高温度下显示出潜在的解吸时间。这些结论得到了原子在分子中量子理论(QTAIM)结果的证实。在相互作用分析之后,观察到 BNCNCs 可以作为美法仑的潜在载体。从偶极矩分析来看,所有三种纳米结构在两种介质中掺杂后都表现出很高的亲水性,但 BNCNCs 更高。总的来说,所有结构都显示出对美法仑药物的潜在载体。

方法

量子力学方法或密度泛函理论已被用于研究所提出结构的基本结构、电学、热力学和其他方面,以开发一种可接受的美法仑药物探测器。在吸附过程之前,通过混合 B3LYP 函数和 6-311G +  + (2d, p) 基组方法对吸附物和所有吸附剂进行了优化。在 298 K 的恒定温度和 1 atm 的恒定压力下使用 Gaussian 09 包。使用相同的功能模型对溶剂化分析-6-311 G +  + (2d, p) 和 B3LYP-以及极化连续体模型(PCM)模型作为基础集进行结构研究。使用 GaussSum 3.0 软件研究了态密度。使用 VMD 和 Multiwfn 软件研究了相互作用研究 QTAIM 和 RDG。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验