文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

deMULTIplex2:用于 scRNA-seq 的稳健样本拆分。

deMULTIplex2: robust sample demultiplexing for scRNA-seq.

机构信息

Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA.

Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.

出版信息

Genome Biol. 2024 Jan 30;25(1):37. doi: 10.1186/s13059-024-03177-y.


DOI:10.1186/s13059-024-03177-y
PMID:38291503
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10829271/
Abstract

Sample multiplexing enables pooled analysis during single-cell RNA sequencing workflows, thereby increasing throughput and reducing batch effects. A challenge for all multiplexing techniques is to link sample-specific barcodes with cell-specific barcodes, then demultiplex sample identity post-sequencing. However, existing demultiplexing tools fail under many real-world conditions where barcode cross-contamination is an issue. We therefore developed deMULTIplex2, an algorithm inspired by a mechanistic model of barcode cross-contamination. deMULTIplex2 employs generalized linear models and expectation-maximization to probabilistically determine the sample identity of each cell. Benchmarking reveals superior performance across various experimental conditions, particularly on large or noisy datasets with unbalanced sample compositions.

摘要

样品多路复用可在单细胞 RNA 测序工作流程中实现混合分析,从而提高通量并减少批次效应。所有多路复用技术的一个挑战是将样品特有的条形码与细胞特有的条形码相关联,然后在测序后对样品身份进行解复用。然而,现有的解复用工具在许多存在条形码交叉污染问题的实际情况下都会失败。因此,我们开发了 deMULTIplex2,这是一种受条形码交叉污染机制模型启发的算法。deMULTIplex2 使用广义线性模型和期望最大化来概率性地确定每个细胞的样品身份。基准测试显示,该算法在各种实验条件下都具有优越的性能,特别是在具有不平衡样品组成的大型或嘈杂数据集上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/686e/10829271/bd365ce26188/13059_2024_3177_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/686e/10829271/13531532af97/13059_2024_3177_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/686e/10829271/f6147401e372/13059_2024_3177_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/686e/10829271/a9ac160f6a79/13059_2024_3177_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/686e/10829271/bd365ce26188/13059_2024_3177_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/686e/10829271/13531532af97/13059_2024_3177_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/686e/10829271/f6147401e372/13059_2024_3177_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/686e/10829271/a9ac160f6a79/13059_2024_3177_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/686e/10829271/bd365ce26188/13059_2024_3177_Fig4_HTML.jpg

相似文献

[1]
deMULTIplex2: robust sample demultiplexing for scRNA-seq.

Genome Biol. 2024-1-30

[2]
deMULTIplex2: robust sample demultiplexing for scRNA-seq.

bioRxiv. 2023-4-12

[3]
Probability of stealth multiplets in sample-multiplexing for droplet-based single-cell analysis.

BMC Genomics. 2025-7-23

[4]
Benchmarking of computational demultiplexing methods for single-nucleus RNA sequencing data.

Brief Bioinform. 2025-7-2

[5]
ScInfeR: an efficient method for annotating cell types and sub-types in single-cell RNA-seq, ATAC-seq, and spatial omics.

Brief Bioinform. 2025-5-1

[6]
Evaluating methods for integrating single-cell data and genetics to understand inflammatory disease complexity.

Front Immunol. 2024-12-5

[7]
DiSC: a statistical tool for fast differential expression analysis of individual-level single-cell RNA-seq data.

Bioinformatics. 2025-6-2

[8]
Ensemblex: an accuracy-weighted ensemble genetic demultiplexing framework for population-scale scRNAseq sample pooling.

Genome Biol. 2025-7-3

[9]
ScAGCN: Graph Convolutional Network with Adaptive Aggregation Mechanism for scRNA-seq Data Dimensionality Reduction.

Interdiscip Sci. 2025-4-25

[10]
SCIntRuler: guiding the integration of multiple single-cell RNA-seq datasets with a novel statistical metric.

Bioinformatics. 2024-9-2

引用本文的文献

[1]
Probability of stealth multiplets in sample-multiplexing for droplet-based single-cell analysis.

BMC Genomics. 2025-7-23

[2]
Selfish mutations promote age-associated erosion of mtDNA integrity in mammals.

Nat Commun. 2025-7-1

[3]
CellBouncer, A Unified Toolkit for Single-Cell Demultiplexing and Ambient RNA Analysis, Reveals Hominid Mitochondrial Incompatibilities.

bioRxiv. 2025-3-23

[4]
Translation dysregulation in cancer as a source for targetable antigens.

Cancer Cell. 2025-5-12

[5]
Endothelial TDP-43 depletion disrupts core blood-brain barrier pathways in neurodegeneration.

Nat Neurosci. 2025-5

[6]
Reducing batch effects in single cell chromatin accessibility measurements by pooled transposition with MULTI-ATAC.

bioRxiv. 2025-2-17

[7]
Systematic benchmark of single-cell hashtag demultiplexing approaches reveals robust performance of a clustering-based method.

Brief Funct Genomics. 2025-1-15

[8]
Selection promotes age-dependent degeneration of the mitochondrial genome.

bioRxiv. 2024-9-28

[9]
Concepts and new developments in droplet-based single cell multi-omics.

Trends Biotechnol. 2024-11

[10]
The temporal progression of lung immune remodeling during breast cancer metastasis.

Cancer Cell. 2024-6-10

本文引用的文献

[1]
Benchmarking single-cell hashtag oligo demultiplexing methods.

NAR Genom Bioinform. 2023-10-11

[2]
demuxmix: demultiplexing oligonucleotide-barcoded single-cell RNA sequencing data with regression mixture models.

Bioinformatics. 2023-8-1

[3]
Comparison and evaluation of statistical error models for scRNA-seq.

Genome Biol. 2022-1-18

[4]
Randomized quantile residuals for diagnosing zero-inflated generalized linear mixed models with applications to microbiome count data.

BMC Bioinformatics. 2021-11-25

[5]
Analytic Pearson residuals for normalization of single-cell RNA-seq UMI data.

Genome Biol. 2021-9-6

[6]
No detectable alloreactive transcriptional responses under standard sample preparation conditions during donor-multiplexed single-cell RNA sequencing of peripheral blood mononuclear cells.

BMC Biol. 2021-1-20

[7]
Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action.

Nat Commun. 2020-8-27

[8]
Demystifying "drop-outs" in single-cell UMI data.

Genome Biol. 2020-8-6

[9]
GMM-Demux: sample demultiplexing, multiplet detection, experiment planning, and novel cell-type verification in single cell sequencing.

Genome Biol. 2020-7-30

[10]
A comparison of residual diagnosis tools for diagnosing regression models for count data.

BMC Med Res Methodol. 2020-7-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索