Mohri Kurato, Watanabe Hiroshi
Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan.
Zoological Lett. 2024 Jan 30;10(1):3. doi: 10.1186/s40851-024-00225-0.
Ctenophora is the earliest metazoan taxon with neurons and muscles. Recent studies have described genetic, physiological, and cellular characteristics of the neural and muscular systems of this phylogenically important lineage. However, despite the ecological diversity of ctenophore niches, including both pelagic and benthic forms, studies have focused predominantly on pelagic species. In the present study, we describe the neural and muscular architectures of the benthic ctenophore, Vallicula multiformis (Order Platyctenida), employing immunohistochemical analysis using antibodies against amidated neuropeptides with the C-terminal sequences VWYa, NPWa, FGLa, or WTGa to compare it to pelagic species. In V. multiformis, which lacks the characteristic comb rows seen in pelagic ctenophores, neural structures that develop beneath the comb were not detected, whereas the subepithelial and tentacle neural networks showed considerable similarity to those of pelagic species. Despite significant differences in morphology and lifestyle, muscle organization in V. multiformis closely resembles that of pelagic species. Detailed analysis of neurons that express these peptides unveiled a neural architecture composed of various neural subtypes. This included widely distributed subepithelial neural networks (SNNs) and neurosecretory cells located primarily in the peripheral region. The consistent distribution patterns of the VWYa-positive SNN and tentacle nerves between V. multiformis and the pelagic species, Bolinopsis mikado, suggest evolutionarily conserved function of these neurons in the Ctenophora. In contrast, NPWa-positive neurons, which extend neurites connecting the apical organ and comb rows in B. mikado, showed a neurite-less neurosecretory cell morphology in this flattened, sessile species. Evaluation of characteristics and variations in neural and muscular architectures shared by benthic and pelagic ctenophore species may yield valuable insights for unraveling the biology of this rapidly evolving yet enigmatic metazoan lineage. These findings also provide important insight into neural control modalities in early metazoan evolution.
栉水母是最早拥有神经元和肌肉的后生动物类群。最近的研究描述了这个在系统发育上具有重要意义的谱系的神经和肌肉系统的遗传、生理和细胞特征。然而,尽管栉水母生态位具有多样性,包括浮游和底栖形式,但研究主要集中在浮游物种上。在本研究中,我们描述了底栖栉水母多形管水母(扁栉水母目)的神经和肌肉结构,采用针对具有C末端序列VWYa、NPWa、FGLa或WTGa的酰胺化神经肽的抗体进行免疫组织化学分析,以将其与浮游物种进行比较。在多形管水母中,没有发现浮游栉水母特有的栉板,也未检测到在栉板下方发育的神经结构,而皮下和触手神经网络与浮游物种的神经网络有相当大的相似性。尽管在形态和生活方式上存在显著差异,但多形管水母的肌肉组织与浮游物种的肌肉组织非常相似。对表达这些肽的神经元的详细分析揭示了由各种神经亚型组成的神经结构。这包括广泛分布的皮下神经网络(SNNs)和主要位于周边区域的神经分泌细胞。多形管水母和浮游物种日本薄皮水母之间VWYa阳性SNN和触手神经的一致分布模式表明,这些神经元在栉水母纲中具有进化上保守的功能。相比之下,在日本薄皮水母中延伸神经突连接顶器和栉板的NPWa阳性神经元,在这种扁平的固着物种中呈现出无神经突的神经分泌细胞形态。评估底栖和浮游栉水母物种共有的神经和肌肉结构的特征和变异,可能为揭示这个快速进化但神秘的后生动物谱系的生物学特性提供有价值的见解。这些发现也为早期后生动物进化中的神经控制方式提供了重要的见解。