Suppr超能文献

深度PBS:用于蛋白质-DNA结合特异性可解释预测的几何深度学习

DeepPBS: Geometric deep learning for interpretable prediction of protein-DNA binding specificity.

作者信息

Mitra Raktim, Li Jinsen, Sagendorf Jared M, Jiang Yibei, Chiu Tsu-Pei, Rohs Remo

出版信息

bioRxiv. 2023 Dec 16:2023.12.15.571942. doi: 10.1101/2023.12.15.571942.

Abstract

Predicting specificity in protein-DNA interactions is a challenging yet essential task for understanding gene regulation. Here, we present Deep Predictor of Binding Specificity (DeepPBS), a geometric deep-learning model designed to predict binding specificity across protein families based on protein-DNA structures. The DeepPBS architecture allows investigation of different family-specific recognition patterns. DeepPBS can be applied to predicted structures, and can aid in the modeling of protein-DNA complexes. DeepPBS is interpretable and can be used to calculate protein heavy atom-level importance scores, demonstrated as a case-study on p53-DNA interface. When aggregated at the protein residue level, these scores conform well with alanine scanning mutagenesis experimental data. The inference time for DeepPBS is sufficiently fast for analyzing simulation trajectories, as demonstrated on a molecular-dynamics simulation of a Hox-DNA tertiary complex with its cofactor. DeepPBS and its corresponding data resources offer a foundation for machine-aided protein-DNA interaction studies, guiding experimental choices and complex design, as well as advancing our understanding of molecular interactions.

摘要

预测蛋白质与DNA相互作用的特异性是理解基因调控一项具有挑战性但又至关重要的任务。在此,我们展示了结合特异性深度预测器(DeepPBS),这是一种几何深度学习模型,旨在基于蛋白质-DNA结构预测跨蛋白质家族的结合特异性。DeepPBS架构允许研究不同的家族特异性识别模式。DeepPBS可应用于预测结构,并有助于蛋白质-DNA复合物的建模。DeepPBS具有可解释性,可用于计算蛋白质重原子水平的重要性得分,以p53-DNA界面为例进行了说明。当在蛋白质残基水平上汇总时,这些得分与丙氨酸扫描诱变实验数据非常吻合。正如对具有其辅因子的Hox-DNA三级复合物的分子动力学模拟所示,DeepPBS的推理时间足够快,可用于分析模拟轨迹。DeepPBS及其相应的数据资源为机器辅助的蛋白质-DNA相互作用研究提供了基础,指导实验选择和复合物设计,并增进我们对分子相互作用的理解。

相似文献

2
Geometric deep learning of protein-DNA binding specificity.蛋白质-DNA 结合特异性的几何深度学习。
Nat Methods. 2024 Sep;21(9):1674-1683. doi: 10.1038/s41592-024-02372-w. Epub 2024 Aug 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验