Suppr超能文献

蛋白质-DNA 结合特异性的几何深度学习。

Geometric deep learning of protein-DNA binding specificity.

机构信息

Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.

Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.

出版信息

Nat Methods. 2024 Sep;21(9):1674-1683. doi: 10.1038/s41592-024-02372-w. Epub 2024 Aug 5.

Abstract

Predicting protein-DNA binding specificity is a challenging yet essential task for understanding gene regulation. Protein-DNA complexes usually exhibit binding to a selected DNA target site, whereas a protein binds, with varying degrees of binding specificity, to a wide range of DNA sequences. This information is not directly accessible in a single structure. Here, to access this information, we present Deep Predictor of Binding Specificity (DeepPBS), a geometric deep-learning model designed to predict binding specificity from protein-DNA structure. DeepPBS can be applied to experimental or predicted structures. Interpretable protein heavy atom importance scores for interface residues can be extracted. When aggregated at the protein residue level, these scores are validated through mutagenesis experiments. Applied to designed proteins targeting specific DNA sequences, DeepPBS was demonstrated to predict experimentally measured binding specificity. DeepPBS offers a foundation for machine-aided studies that advance our understanding of molecular interactions and guide experimental designs and synthetic biology.

摘要

预测蛋白质-DNA 结合特异性是理解基因调控的一项具有挑战性但又必不可少的任务。蛋白质-DNA 复合物通常表现为与选定的 DNA 靶标结合,而蛋白质则以不同程度的结合特异性与广泛的 DNA 序列结合。这些信息在单个结构中无法直接获取。在这里,为了获取这些信息,我们提出了结合特异性的深度预测器(DeepPBS),这是一种几何深度学习模型,旨在从蛋白质-DNA 结构预测结合特异性。DeepPBS 可应用于实验或预测结构。可以提取出对界面残基具有解释力的蛋白质重原子重要性得分。当在蛋白质残基水平上进行聚合时,通过突变实验验证这些得分。当应用于针对特定 DNA 序列的设计蛋白质时,DeepPBS 被证明可以预测实验测量的结合特异性。DeepPBS 为机器辅助研究提供了基础,这些研究可以加深我们对分子相互作用的理解,并指导实验设计和合成生物学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40c9/11399107/c3b6db88976b/41592_2024_2372_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验