Le Thanh-Hiep Thi, Ferro-Costas David, Fernández-Ramos Antonio, Ortuño Manuel A
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
J Phys Chem C Nanomater Interfaces. 2024 Jan 12;128(3):1049-1057. doi: 10.1021/acs.jpcc.3c06053. eCollection 2024 Jan 25.
Zr-based metal-organic frameworks (MOFs) are excellent heterogeneous porous catalysts due to their thermal stability. Their tunability via node and linker modifications makes them amenable for theoretical studies on catalyst design. However, detailed benchmarks on MOF-based reaction mechanisms combined with kinetics analysis are still scarce. Thus, we here evaluate different computational models and density functional theory (DFT) methods followed by kinetic Monte Carlo studies for a case reaction relevant in biomass upgrading, i.e., the conversion of methyl levulinate to γ-valerolactone catalyzed by UiO-66. We show the impact of cluster versus periodic models, the importance of the DF of choice, and the direct comparison to experimental data via simulated kinetics data. Overall, we found that Perdew-Burke-Ernzerhof (PBE), a widely employed method in plane-wave periodic calculations, greatly overestimates reaction rates, while M06 with cluster models better fits the available experimental data and is recommended whenever possible.
基于锆的金属有机框架材料(MOFs)因其热稳定性而成为优异的多相多孔催化剂。通过节点和连接体修饰对其进行调控,使其适用于催化剂设计的理论研究。然而,结合动力学分析对基于MOF的反应机理进行详细的基准测试仍然很少。因此,我们在此评估了不同的计算模型和密度泛函理论(DFT)方法,随后通过动力学蒙特卡罗研究,针对生物质升级中的一个相关案例反应,即由UiO-66催化的乙酰丙酸甲酯转化为γ-戊内酯反应进行了研究。我们展示了簇模型与周期性模型的影响、所选密度泛函的重要性,以及通过模拟动力学数据与实验数据的直接比较。总体而言,我们发现,在平面波周期性计算中广泛使用的Perdew-Burke-Ernzerhof(PBE)方法大大高估了反应速率,而采用簇模型的M06能更好地拟合现有实验数据,因此建议尽可能使用该方法。