Suppr超能文献

基于轻量化 GBW-YOLOv5 模型的多尺度棉花害虫快速检测。

Rapid detection of multi-scale cotton pests based on lightweight GBW-YOLOv5 model.

机构信息

College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China.

出版信息

Pest Manag Sci. 2024 Jun;80(6):2738-2750. doi: 10.1002/ps.7978. Epub 2024 Jan 31.

Abstract

BACKGROUND

Pest infestation is one of the primary causes of decreased cotton yield and quality. Rapid and accurate identification of cotton pest categories is essential for producers to implement effective and expeditious control measures. Existing multi-scale cotton pest detection technology still suffers from poor accuracy and rapidity of detection. This study proposed the pruned GBW-YOLOv5 (Ghost-BiFPN-WIoU You Only Look Once version 5), a novel model for the rapid detection of cotton pests.

RESULTS

The detection performance of the pruned GBW-YOLOv5 model for cotton pests was evaluated based on the self-built cotton pest dataset. In comparison with the original YOLOv5 model, the pruned GBW-YOLOv5 model demonstrated significant reductions in complexity, size, and parameters by 68.4%, 66.7%, and 68.2%, respectively. Remarkably, the mean average precision (mAP) decreased by a mere 3.8%. The pruned GBW-YOLOv5 model outperformed other classic object detection models, achieving an outstanding detection speed of 114.9 FPS.

CONCLUSION

The methodology proposed by our research enabled rapid and accurate identification of cotton pests, laying a solid foundation for the implementation of precise pest control measures. The pruned GBW-YOLOv5 model provided theoretical research and technical support for detecting cotton pests under field conditions. © 2024 Society of Chemical Industry.

摘要

背景

虫害是导致棉花产量和质量下降的主要原因之一。快速准确地识别棉花虫害类别对于生产者实施有效和迅速的控制措施至关重要。现有的多尺度棉花虫害检测技术仍然存在检测精度和速度差的问题。本研究提出了修剪后的 GBW-YOLOv5(Ghost-BiFPN-WIoU You Only Look Once 版本 5),这是一种用于快速检测棉花虫害的新型模型。

结果

基于自建的棉花虫害数据集,评估了修剪后的 GBW-YOLOv5 模型对棉花虫害的检测性能。与原始的 YOLOv5 模型相比,修剪后的 GBW-YOLOv5 模型在复杂度、大小和参数方面分别显著减少了 68.4%、66.7%和 68.2%。值得注意的是,平均精度(mAP)仅下降了 3.8%。修剪后的 GBW-YOLOv5 模型优于其他经典的目标检测模型,实现了卓越的 114.9 FPS 的检测速度。

结论

本研究提出的方法能够快速准确地识别棉花虫害,为实施精确的虫害控制措施奠定了基础。修剪后的 GBW-YOLOv5 模型为田间条件下检测棉花虫害提供了理论研究和技术支持。 © 2024 化学工业协会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验