U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Health and School of Medicine, Intermountain Medical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, Utah.
Department of Cardiothoracic Surgery, Stanford University, Stanford, California.
JAMA Cardiol. 2024 Mar 1;9(3):272-282. doi: 10.1001/jamacardio.2023.5372.
The existing models predicting right ventricular failure (RVF) after durable left ventricular assist device (LVAD) support might be limited, partly due to lack of external validation, marginal predictive power, and absence of intraoperative characteristics.
To derive and validate a risk model to predict RVF after LVAD implantation.
DESIGN, SETTING, AND PARTICIPANTS: This was a hybrid prospective-retrospective multicenter cohort study conducted from April 2008 to July 2019 of patients with advanced heart failure (HF) requiring continuous-flow LVAD. The derivation cohort included patients enrolled at 5 institutions. The external validation cohort included patients enrolled at a sixth institution within the same period. Study data were analyzed October 2022 to August 2023.
Study participants underwent chronic continuous-flow LVAD support.
The primary outcome was RVF incidence, defined as the need for RV assist device or intravenous inotropes for greater than 14 days. Bootstrap imputation and adaptive least absolute shrinkage and selection operator variable selection techniques were used to derive a predictive model. An RVF risk calculator (STOP-RVF) was then developed and subsequently externally validated, which can provide personalized quantification of the risk for LVAD candidates. Its predictive accuracy was compared with previously published RVF scores.
The derivation cohort included 798 patients (mean [SE] age, 56.1 [13.2] years; 668 male [83.7%]). The external validation cohort included 327 patients. RVF developed in 193 of 798 patients (24.2%) in the derivation cohort and 107 of 327 patients (32.7%) in the validation cohort. Preimplant variables associated with postoperative RVF included nonischemic cardiomyopathy, intra-aortic balloon pump, microaxial percutaneous left ventricular assist device/venoarterial extracorporeal membrane oxygenation, LVAD configuration, Interagency Registry for Mechanically Assisted Circulatory Support profiles 1 to 2, right atrial/pulmonary capillary wedge pressure ratio, use of angiotensin-converting enzyme inhibitors, platelet count, and serum sodium, albumin, and creatinine levels. Inclusion of intraoperative characteristics did not improve model performance. The calculator achieved a C statistic of 0.75 (95% CI, 0.71-0.79) in the derivation cohort and 0.73 (95% CI, 0.67-0.80) in the validation cohort. Cumulative survival was higher in patients composing the low-risk group (estimated <20% RVF risk) compared with those in the higher-risk groups. The STOP-RVF risk calculator exhibited a significantly better performance than commonly used risk scores proposed by Kormos et al (C statistic, 0.58; 95% CI, 0.53-0.63) and Drakos et al (C statistic, 0.62; 95% CI, 0.57-0.67).
Implementing routine clinical data, this multicenter cohort study derived and validated the STOP-RVF calculator as a personalized risk assessment tool for the prediction of RVF and RVF-associated all-cause mortality.
现有的预测耐用性左心室辅助装置 (LVAD) 支持后右心室衰竭 (RVF) 的模型可能存在局限性,部分原因是缺乏外部验证、预测能力有限以及缺乏术中特征。
建立并验证预测 LVAD 植入后 RVF 的风险模型。
设计、设置和参与者:这是一项从 2008 年 4 月至 2019 年 7 月进行的混合前瞻性回顾性多中心队列研究,纳入需要连续流动 LVAD 的晚期心力衰竭 (HF) 患者。推导队列纳入了在 5 家机构登记的患者。外部验证队列纳入了同期在同一机构登记的 6 家机构的患者。研究数据于 2022 年 10 月至 2023 年 8 月进行分析。
研究参与者接受慢性连续流动 LVAD 支持。
主要结局是 RVF 发生率,定义为需要 RV 辅助装置或静脉正性肌力药治疗超过 14 天。使用 bootstrap 插补和自适应最小绝对收缩和选择算子变量选择技术推导预测模型。随后开发并外部验证了 RVF 风险计算器(STOP-RVF),该计算器可以为 LVAD 候选者提供个性化的风险量化。并将其预测准确性与先前发表的 RVF 评分进行比较。
推导队列纳入了 798 例患者(平均[SE]年龄,56.1[13.2]岁;668 例男性[83.7%])。外部验证队列纳入了 327 例患者。在推导队列中,798 例患者中有 193 例(24.2%)发生 RVF,在验证队列中,327 例患者中有 107 例(32.7%)发生 RVF。与术后 RVF 相关的术前变量包括非缺血性心肌病、主动脉内球囊泵、微轴经皮左心室辅助装置/静脉动脉体外膜肺氧合、LVAD 配置、机构间机械循环支持注册 1 至 2 型、右心房/肺毛细血管楔压比、血管紧张素转换酶抑制剂的使用、血小板计数和血清钠、白蛋白和肌酐水平。纳入术中特征并没有改善模型性能。该计算器在推导队列中的 C 统计量为 0.75(95%CI,0.71-0.79),在验证队列中的 C 统计量为 0.73(95%CI,0.67-0.80)。与高风险组相比,低风险组(估计 RVF 风险<20%)的患者累积生存率更高。STOP-RVF 风险计算器的表现明显优于 Kormos 等人提出的常用风险评分(C 统计量为 0.58;95%CI,0.53-0.63)和 Drakos 等人提出的风险评分(C 统计量为 0.62;95%CI,0.57-0.67)。
该多中心队列研究通过实施常规临床数据,得出并验证了 STOP-RVF 计算器,作为预测 RVF 和 RVF 相关全因死亡率的个性化风险评估工具。