Suppr超能文献

预测接受左心室辅助装置植入术患者右心室衰竭的风险:系统评价。

Predicting the Risk of Right Ventricular Failure in Patients Undergoing Left Ventricular Assist Device Implantation: A Systematic Review.

机构信息

Department of Medicine, University of Toronto, Canada (C.F., F.B.).

Heart Failure and Transplant Program, Peter Munk Cardiac Centre (M.M., J.K.K.V.-N., F.F., F.B., A.C.A.), University Health Network, Toronto, Canada.

出版信息

Circ Heart Fail. 2020 Oct;13(10):e006994. doi: 10.1161/CIRCHEARTFAILURE.120.006994. Epub 2020 Sep 28.

Abstract

BACKGROUND

Right ventricular failure (RVF) is a cause of major morbidity and mortality after left ventricular assist device (LVAD) implantation. It is, therefore, integral to identify patients who may benefit from biventricular support early post-LVAD implantation. Our objective was to explore the performance of risk prediction models for RVF in adult patients undergoing LVAD implantation.

METHODS

A systematic search was performed on Medline, Embase, Cochrane Central Register of Controlled Trials, and Cochrane Database of Systematic Reviews from inception until August 2019 for all relevant studies. Performance was assessed by discrimination (via C statistic) and calibration if reported. Study quality was assessed using the Prediction Model Risk of Bias Assessment Tool criteria.

RESULTS

After reviewing 3878 citations, 25 studies were included, featuring 20 distinctly derived models. Five models were derived from large multicenter cohorts: the European Registry for Patients With Mechanical Circulatory Support, Interagency Registry for Mechanically Assisted Circulatory Support, Kormos, Pittsburgh Bayesian, and Mechanical Circulatory Support Research Network RVF models. Seventeen studies (68%) were conducted in cohorts implanted with continuous-flow LVADs exclusively. The definition of RVF as an outcome was heterogenous among models. Seven derived models (28%) were validated in at least 2 cohorts, reporting limited discrimination (C-statistic range, 0.53-0.65). Calibration was reported in only 3 studies and was variable.

CONCLUSIONS

Existing RVF prediction models exhibit heterogeneous derivation and validation methodologies, varying definitions of RVF, and are mostly derived from single centers. Validation studies of these prediction models demonstrate poor-to-modest discrimination. Newer models are derived in cohorts implanted with continuous-flow LVADs exclusively and exhibit modest discrimination. Derivation of enhanced discriminatory models and their validations in multicenter cohorts is needed.

摘要

背景

右心室衰竭(RVF)是左心室辅助装置(LVAD)植入后主要发病率和死亡率的原因。因此,对于 LVAD 植入后可能受益于双心室支持的患者,尽早识别非常重要。我们的目的是探讨用于 LVAD 植入后成人 RVF 风险预测模型的性能。

方法

从建库至 2019 年 8 月,通过 Medline、Embase、Cochrane 对照试验中心注册库和 Cochrane 系统评价数据库,对所有相关研究进行系统检索。如果有报道,则通过判别(通过 C 统计量)和校准来评估性能。使用预测模型风险偏倚评估工具标准评估研究质量。

结果

在回顾了 3878 条引文后,共纳入 25 项研究,涉及 20 个不同的模型。5 个模型源自大型多中心队列:欧洲机械循环支持患者登记处、机械辅助循环支持机构间登记处、Kormos、匹兹堡贝叶斯和机械循环支持研究网络 RVF 模型。17 项研究(68%)仅在连续流动 LVAD 植入的队列中进行。模型中 RVF 的定义结果存在异质性。7 个衍生模型(28%)在至少 2 个队列中进行了验证,报告了有限的判别力(C 统计量范围,0.53-0.65)。仅 3 项研究报告了校准情况,且结果存在差异。

结论

现有的 RVF 预测模型表现出异质的推导和验证方法、RVF 的不同定义,且主要来自单一中心。这些预测模型的验证研究表明,判别力较差。较新的模型仅在植入连续流动 LVAD 的队列中推导,具有适度的判别力。需要在多中心队列中开发和验证更具判别力的增强模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验