Suppr超能文献

通过在超高体积分数下剪切胶体分散体创建的高反射光子晶体。

Hyperreflective photonic crystals created by shearing colloidal dispersions at ultrahigh volume fraction.

作者信息

Kim Minji, Kim Jong Bin, Kim Shin-Hyun

机构信息

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea.

出版信息

Microsyst Nanoeng. 2024 Jan 31;10:21. doi: 10.1038/s41378-024-00651-2. eCollection 2024.

Abstract

Colloidal crystallization serves as one of the most economic and scalable production methods for photonic crystals. However, insufficient optical performance, nonuniformity and low reproducibility remain challenges for advanced high-value applications. In this study, we optimally formulate a photocurable dispersion of silica particles and apply shear flow to unify the orientation of the colloidal crystals, ensuring high optical performance and uniformity. The silica particles experience strong repulsion at ultrahigh volume fractions of 50% but demonstrate low mobility, leading to polycrystalline structures. Applying shear flow to the dispersions allows the silica particles to rearrange into larger crystalline domains with a unidirectional orientation along the flow. This shear-induced structural change produces absolute reflectivity at the stopband as high as 90% and a high transparency of 90% at off-resonant wavelengths with minimal diffusive scattering. Furthermore, the strong interparticle repulsion ensures a uniform volume fraction of particles throughout the dispersion, reducing deviations in the optical properties. We intricately micropattern the photocurable dispersions using photolithography. Additionally, the photonic films and patterns can be stacked to form multiple layers, displaying mixed structural colors and multiple reflectance peaks without sacrificing reflectivity. These superior photonic materials hold promise for various optical applications, including optical components and anticounterfeiting patches.

摘要

胶体结晶是光子晶体最经济且可扩展的生产方法之一。然而,对于先进的高价值应用而言,光学性能不足、不均匀性和低再现性仍然是挑战。在本研究中,我们优化配制了二氧化硅颗粒的光固化分散体,并施加剪切流以使胶体晶体的取向统一,从而确保高光学性能和均匀性。二氧化硅颗粒在50%的超高体积分数下会经历强烈排斥,但迁移率较低,导致形成多晶结构。对分散体施加剪切流可使二氧化硅颗粒重新排列成更大的晶域,沿流动方向具有单向取向。这种剪切诱导的结构变化在阻带处产生高达90%的绝对反射率,在非共振波长处具有90%的高透明度,且漫散射极小。此外,强烈的颗粒间排斥确保了整个分散体中颗粒的体积分数均匀,减少了光学性能的偏差。我们使用光刻技术对光固化分散体进行精细的微图案化。此外,光子薄膜和图案可以堆叠形成多层,呈现混合结构颜色和多个反射峰,而不会牺牲反射率。这些优异的光子材料在包括光学元件和防伪贴片在内的各种光学应用中具有广阔前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2641/10827709/a340252aa4ca/41378_2024_651_Fig1_HTML.jpg

相似文献

1
Hyperreflective photonic crystals created by shearing colloidal dispersions at ultrahigh volume fraction.
Microsyst Nanoeng. 2024 Jan 31;10:21. doi: 10.1038/s41378-024-00651-2. eCollection 2024.
2
Photonic Microbeads Templated by Oil-in-Oil Emulsion Droplets for High Saturation of Structural Colors.
Small. 2022 Feb;18(8):e2105225. doi: 10.1002/smll.202105225. Epub 2021 Dec 10.
3
Magnetic assembly route to colloidal responsive photonic nanostructures.
Acc Chem Res. 2012 Sep 18;45(9):1431-40. doi: 10.1021/ar200276t. Epub 2012 May 11.
4
Colloidal Photonic Composites with a Long-Range Order by Hot-Pressing Polymer Brush-Grafted Silica Colloids.
ACS Appl Mater Interfaces. 2024 Mar 27;16(12):15308-15321. doi: 10.1021/acsami.4c00184. Epub 2024 Mar 13.
5
Structural Coloration with Nonclose-Packed Array of Bidisperse Colloidal Particles.
Small. 2019 Feb;15(5):e1804548. doi: 10.1002/smll.201804548. Epub 2019 Jan 13.
6
Structural Color Mixing in Microcapsules through Exclusive Crystallization of Binary and Ternary Colloids.
Adv Mater. 2023 Sep;35(38):e2302750. doi: 10.1002/adma.202302750. Epub 2023 Jul 28.
7
Regioselective Growth of Colloidal Crystals Induced by Depletion Attraction.
Adv Mater. 2024 Jan;36(4):e2309938. doi: 10.1002/adma.202309938. Epub 2023 Nov 30.
8
2D Photonic Colloidal Liquid Crystals Composed of Self-Assembled Rod-Shaped Particles.
Adv Mater. 2024 Sep;36(38):e2404396. doi: 10.1002/adma.202404396. Epub 2024 Jun 26.
9
Interfacial Colloidal Self-Assembly for Functional Materials.
Acc Chem Res. 2023 Apr 4;56(7):740-751. doi: 10.1021/acs.accounts.2c00705. Epub 2023 Mar 15.

引用本文的文献

1
Full-Spectrum Mechanochromic Photonic Films with Large Interparticle Distance.
Adv Sci (Weinh). 2025 Feb;12(8):e2413881. doi: 10.1002/advs.202413881. Epub 2025 Jan 7.

本文引用的文献

1
Photonics in nature and bioinspired designs: sustainable approaches for a colourful world.
Nanoscale Adv. 2020 Sep 14;2(11):5106-5129. doi: 10.1039/d0na00445f. eCollection 2020 Nov 11.
2
Designing photonic microparticles with droplet microfluidics.
Chem Commun (Camb). 2022 Sep 15;58(74):10303-10328. doi: 10.1039/d2cc03629k.
3
Evaporation-Induced Self-Assembly of Metal Oxide Inverse Opals: From Synthesis to Applications.
Acc Chem Res. 2022 Jul 5;55(13):1809-1820. doi: 10.1021/acs.accounts.2c00087. Epub 2022 Jun 14.
4
Bioinspired Colloidal Photonic Composites: Fabrications and Emerging Applications.
Adv Mater. 2022 Dec;34(52):e2110488. doi: 10.1002/adma.202110488. Epub 2022 Apr 24.
5
Direct writing of customized structural-color graphics with colloidal photonic inks.
Sci Adv. 2021 Nov 26;7(48):eabj8780. doi: 10.1126/sciadv.abj8780. Epub 2021 Nov 24.
7
Designing Structural-Color Patterns Composed of Colloidal Arrays.
ACS Appl Mater Interfaces. 2019 Apr 24;11(16):14485-14509. doi: 10.1021/acsami.8b21276. Epub 2019 Apr 12.
8
Self-Reporting Colorimetric Analysis of Drug Release by Molecular Imprinted Structural Color Contact Lens.
ACS Appl Mater Interfaces. 2018 Oct 10;10(40):34611-34617. doi: 10.1021/acsami.8b11655. Epub 2018 Sep 26.
9
Direct-Write Freeform Colloidal Assembly.
Adv Mater. 2018 Nov;30(44):e1803620. doi: 10.1002/adma.201803620. Epub 2018 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验