Lee Hwan-Young, Kang Jun-Gu, Kim Young-Seok, Kim Shin-Hyun
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Korea Electronics Technology Institute (KETI), Seongnam, Gyeonggi-do, 13509, Republic of Korea.
Adv Sci (Weinh). 2025 Feb;12(8):e2413881. doi: 10.1002/advs.202413881. Epub 2025 Jan 7.
Non-close-packed crystalline arrays of colloidal particles in an elastic matrix exhibit mechanochromism. However, small interparticle distances often limit the range of reversible color shifts and reduce reflectivity during a blueshift. A straightforward, reproducible strategy using matrix swelling to increase interparticle distance and improve mechanochromic performance is presented. Photonic composites are initially prepared with silica particle arrays embedded in an elastomer matrix at volume fractions of 0.35-0.5. To increase interparticle distance, the composites are immersed in an elastomer-forming monomer, causing the matrix to swell, followed by photopolymerization, thereby producing liquid-free composites. The degree of swelling is controllable up to 3.16, depending on monomer choice, matrix volume fraction, and crosslinking density. The process can be repeated to further increase swelling up to 10.36. This method can reduce the volume fraction of silica particles from 40% to 3.8%, while interparticle distance increases from 53 to 257 nm. The swollen photonic composites exhibit a full visible spectrum under compression, while minimizing reflectivity loss. This allows red-colored photonic composites to be transformed into vivid multicolor patterns when compressed with stamps featuring spatial height variations.
弹性基质中胶体颗粒的非密排晶体阵列表现出机械变色现象。然而,较小的颗粒间距常常限制了可逆颜色变化的范围,并在蓝移过程中降低了反射率。本文提出了一种简单、可重复的策略,即利用基质膨胀来增加颗粒间距并改善机械变色性能。光子复合材料最初是通过将二氧化硅颗粒阵列以0.35 - 0.5的体积分数嵌入弹性体基质中制备而成。为了增加颗粒间距,将复合材料浸入一种形成弹性体的单体中,使基质膨胀,随后进行光聚合,从而得到无液体的复合材料。根据单体选择、基质体积分数和交联密度的不同,膨胀程度可控,最高可达3.16。该过程可以重复进行,以进一步将膨胀度提高到10.36。这种方法可以将二氧化硅颗粒的体积分数从40%降低到3.8%,而颗粒间距则从53纳米增加到257纳米。膨胀后的光子复合材料在压缩时呈现出完整的可见光谱,同时将反射率损失降至最低。这使得当用具有空间高度变化的印章压缩时,红色光子复合材料能够转变为鲜艳的多色图案。