Suppr超能文献

利用 CRISPR/Cas9 进行基因组编辑。

Genomic editing in by CRISPR/Cas9.

机构信息

iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.

Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.

出版信息

Appl Environ Microbiol. 2024 Feb 21;90(2):e0225023. doi: 10.1128/aem.02250-23. Epub 2024 Feb 2.

Abstract

complex bacteria have emerged as opportunistic pathogens in patients with cystic fibrosis and immunocompromised individuals, causing life-threatening infections. Because of the relevance of these microorganisms, genetic manipulation is crucial for explaining the genetic mechanisms leading to pathogenesis. Despite the availability of allelic exchange tools to obtain unmarked gene deletions in , these require a step of merodiploid formation and another of merodiploid resolution through two independent homologous recombination events, making the procedure long-lasting. The CRISPR/Cas9-based system could ease this constraint, as only one step is needed for allelic exchange. Here, we report the modification of a two-plasmid system (pCasPA and pACRISPR) for genome editing in . Several modifications were implemented, including selection marker replacement, the optimization of promoter induction for the expression of Cas9 and λ-Red system encoding genes, and the establishment of plasmid curing procedures based on the gene or growth at a sub-optimal temperature of 18°C-20°C with serial passages. We have shown the efficiency of this CRISPR/Cas9 method in the precise and unmarked deletion of different genes (, , , and ) from two strains of , as well as its usefulness in the targeted insertion of the gene encoding the green fluorescence protein into a precise genome location. As pCasPA was successfully introduced in other complex species, this study opens up the possibility of using CRISPR/Cas9-based systems as efficient tools for genome editing in these species, allowing faster and more cost-effective genetic manipulation.IMPORTANCE encompasses different species of bacteria, some of them pathogenic to animals and plants, but others are beneficial by promoting plant growth through symbiosis or as biocontrol agents. Among these species, , a member of the complex, is one of the predominant species infecting the lungs of cystic fibrosis patients, often causing respiratory chronic infections that are very difficult to eradicate. Since the species is understudied, we have developed a genetic tool based on the CRISPR/Cas9 system to delete genes efficiently from the genomes of these strains. We could also insert foreign genes that can be precisely placed in a chosen genomic region. This method, faster than other conventional strategies based on allelic exchange, will have a major contribution to understanding the virulence mechanisms in , but it can likely be extended to other species.

摘要

复杂细菌已成为囊性纤维化和免疫功能低下患者的机会性病原体,导致危及生命的感染。由于这些微生物的相关性,遗传操作对于解释导致发病机制的遗传机制至关重要。尽管存在等位基因交换工具可用于获得无标记基因缺失,但这些工具需要经过杂交形成和杂交体解决的两个独立同源重组事件,从而使该过程变得持久。基于 CRISPR/Cas9 的系统可以缓解这种限制,因为等位基因交换只需要一步。在这里,我们报告了修改用于 基因组编辑的双质粒系统(pCasPA 和 pACRISPR)。实施了几种修改,包括选择标记替换、优化 Cas9 和 λ-Red 系统编码基因表达的 启动子诱导、以及基于 基因或在 18°C-20°C 亚最佳温度下生长的质粒消除程序。我们已经证明了这种 CRISPR/Cas9 方法在两个 菌株中精确且无标记地删除不同基因( 、 、 、 )的效率,以及在将编码绿色荧光蛋白的 基因靶向插入精确基因组位置的有用性。由于 pCasPA 已成功引入其他 复杂物种,因此这项研究为在这些物种中使用基于 CRISPR/Cas9 的系统作为基因组编辑的有效工具开辟了可能性,允许更快、更具成本效益的遗传操作。重要性包括不同的细菌物种,其中一些对动物和植物具有致病性,而另一些则通过共生或作为生物防治剂促进植物生长而有益。在这些物种中, 是 复杂物种的成员之一,是感染囊性纤维化患者肺部的主要物种之一,经常导致难以根除的呼吸道慢性感染。由于 物种研究不足,我们开发了一种基于 CRISPR/Cas9 系统的遗传工具,可从这些菌株的基因组中有效删除基因。我们还可以插入可以精确放置在选定基因组区域的外源基因。与基于等位基因交换的其他传统策略相比,这种方法更快,将对理解 中的毒力机制有重大贡献,但它可能扩展到其他 物种。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ff6/10880607/09f7369f7b0f/aem.02250-23.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验