Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba, Canada.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0069924. doi: 10.1128/aem.00699-24. Epub 2024 Jun 13.
Genome editing in non-model bacteria is important to understand gene-to-function links that may differ from those of model microorganisms. Although species of the complex (Bcc) have great biotechnological capacities, the limited genetic tools available to understand and mitigate their pathogenic potential hamper their utilization in industrial applications. To broaden the genetic tools available for Bcc species, we developed RhaCAST, a targeted DNA insertion platform based on a CRISPR-associated transposase driven by a rhamnose-inducible promoter. We demonstrated the utility of the system for targeted insertional mutagenesis in the Bcc strains K56-2 and ATCC17616. We showed that the RhaCAST system can be used for loss- and gain-of-function applications. Importantly, the selection marker could be excised and reused to allow iterative genetic manipulation. The RhaCAST system is faster, easier, and more adaptable than previous insertional mutagenesis tools available for Bcc species and may be used to disrupt pathogenicity elements and insert relevant genetic modules, enabling Bcc biotechnological applications.
Species of the complex (Bcc) have great biotechnological potential but are also opportunistic pathogens. Genetic manipulation of Bcc species is necessary to understand gene-to-function links. However, limited genetic tools are available to manipulate Bcc, hindering our understanding of their pathogenic traits and their potential in biotechnological applications. We developed a genetic tool based on CRISPR-associated transposase to increase the genetic tools available for Bcc species. The genetic tool we developed in this study can be used for loss and gain of function in Bcc species. The significance of our work is in expanding currently available tools to manipulate Bcc.
在非模式细菌中进行基因组编辑对于理解基因与功能之间的联系至关重要,因为这些联系可能与模式微生物中的联系不同。尽管 复合体(Bcc)的物种具有巨大的生物技术潜力,但用于了解和减轻其致病潜力的有限遗传工具阻碍了它们在工业应用中的利用。为了拓宽可用于 Bcc 物种的遗传工具,我们开发了 RhaCAST,这是一种基于 CRISPR 相关转座酶的靶向 DNA 插入平台,由鼠李糖诱导启动子驱动。我们证明了该系统在 Bcc 菌株 K56-2 和 ATCC17616 中的靶向插入诱变中的实用性。我们表明,RhaCAST 系统可用于功能丧失和功能获得应用。重要的是,选择标记可以被切除并重复使用,以允许迭代遗传操作。与可用于 Bcc 物种的先前插入诱变工具相比,RhaCAST 系统更快、更容易且更具适应性,并且可用于破坏致病性元件并插入相关的遗传模块,从而实现 Bcc 生物技术应用。
复合体(Bcc)的物种具有巨大的生物技术潜力,但也是机会性病原体。遗传操纵 Bcc 物种对于理解基因与功能之间的联系是必要的。然而,用于操纵 Bcc 的遗传工具是有限的,这阻碍了我们对其致病特征及其在生物技术应用中的潜力的理解。我们开发了一种基于 CRISPR 相关转座酶的遗传工具,以增加可用于 Bcc 物种的遗传工具。我们在这项研究中开发的遗传工具可用于 Bcc 物种的功能丧失和功能获得。我们工作的意义在于扩展目前可用于操纵 Bcc 的工具。