Suppr超能文献

评估语音障碍儿童的 rhoticity 分类的声学特征表示和归一化。

Evaluating acoustic representations and normalization for rhoticity classification in children with speech sound disorders.

机构信息

Communication Sciences & Disorders, Syracuse University, Syracuse, New York 13244, USA.

Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA.

出版信息

JASA Express Lett. 2024 Feb 1;4(2). doi: 10.1121/10.0024632.

Abstract

The effects of different acoustic representations and normalizations were compared for classifiers predicting perception of children's rhotic versus derhotic /ɹ/. Formant and Mel frequency cepstral coefficient (MFCC) representations for 350 speakers were z-standardized, either relative to values in the same utterance or age-and-sex data for typical /ɹ/. Statistical modeling indicated age-and-sex normalization significantly increased classifier performances. Clinically interpretable formants performed similarly to MFCCs and were endorsed for deep neural network engineering, achieving mean test-participant-specific F1-score = 0.81 after personalization and replication (σx = 0.10, med = 0.83, n = 48). Shapley additive explanations analysis indicated the third formant most influenced fully rhotic predictions.

摘要

比较了不同声学表示和归一化方法对预测儿童 r 音与 dr 音感知的分类器的影响。对 350 位发音者的共振峰和梅尔频率倒谱系数(MFCC)表示进行 z 标准化,分别相对于同一话语中的值或典型 r 音的年龄和性别数据。统计建模表明,年龄和性别归一化显著提高了分类器的性能。可临床解释的共振峰与 MFCCs 表现相似,并被推荐用于深度神经网络工程,在个性化和复制后,平均测试参与者特定的 F1 得分为 0.81(σx=0.10,中位数=0.83,n=48)。Shapley 加法解释分析表明,第三共振峰对完全 r 音预测的影响最大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6f9/11522988/0a6b10e6fa3d/nihms-2029028-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验