Suppr超能文献

Physics-based supervised learning method for high dynamic range 3D measurement with high fidelity.

作者信息

Li Fuqian, Niu Xingman, Zhang Jing, Zhang Qican, Wang Yajun

出版信息

Opt Lett. 2024 Feb 1;49(3):602-605. doi: 10.1364/OL.506775.

Abstract

High dynamic range (HDR) 3D measurement is a meaningful but challenging problem. Recently, many deep-learning-based methods have been proposed for the HDR problem. However, due to learning redundant fringe intensity information, their networks are difficult to converge for data with complex surface reflectivity and various illumination conditions, resulting in non-robust performance. To address this problem, we propose a physics-based supervised learning method. By introducing the physical model for phase retrieval, we design a novel, to the best of our knowledge, sinusoidal-component-to-sinusoidal-component mapping paradigm. Consequently, the scale difference of fringe intensity in various illumination scenarios can be eliminated. Compared with conventional supervised-learning methods, our method can greatly promote the convergence of the network and the generalization ability, while compared with the recently proposed unsupervised-learning method, our method can recover complex surfaces with much more details. To better evaluate our method, we specially design the experiment by training the network merely using the metal objects and testing the performance using different diffuse sculptures, metal surfaces, and their hybrid scenes. Experiments for all the testing scenarios have high-quality phase recovery with an STD error of about 0.03 rad, which reveals the superior generalization ability for complex reflectivity and various illumination conditions. Furthermore, the zoom-in 3D plots of the sculpture verify its fidelity on recovering fine details.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验