Suppr超能文献

用于单像素无图像传感的全局最优半监督学习

Global-optimal semi-supervised learning for single-pixel image-free sensing.

作者信息

Zhan Xinrui, Lu Hui, Yan Rong, Bian Liheng

出版信息

Opt Lett. 2024 Feb 1;49(3):682-685. doi: 10.1364/OL.511448.

Abstract

Single-pixel sensing offers low-cost detection and reliable perception, and the image-free sensing technique enhances its efficiency by extracting high-level features directly from compressed measurements. However, the conventional methods have great limitations in practical applications, due to their high dependence on large labelled data sources and incapability to do complex tasks. In this Letter, we report an image-free semi-supervised sensing framework based on GAN and achieve an end-to-end global optimization on the part-labelled datasets. Simulation on the MNIST realizes 94.91% sensing accuracy at 0.1 sampling ratio, with merely 0.3% of the dataset holding its classification label. When comparing to the conventional single-pixel sensing methods, the reported technique not only contributes to a high-robust result in both conventional (98.49% vs. 97.36%) and resource-constrained situations (94.91% vs. 83.83%) but also offers a more practical and powerful detection fashion for single-pixel sensing, with much less human effort and computation resources.

摘要

单像素传感提供了低成本检测和可靠感知,且无图像传感技术通过直接从压缩测量中提取高级特征提高了其效率。然而,传统方法在实际应用中存在很大局限性,因为它们高度依赖大型标记数据源且无法完成复杂任务。在本信函中,我们报告了一种基于生成对抗网络(GAN)的无图像半监督传感框架,并在部分标记数据集上实现了端到端全局优化。在MNIST数据集上的仿真表明,在0.1的采样率下传感准确率达到94.91%,而仅有0.3%的数据集拥有其分类标签。与传统单像素传感方法相比,所报道的技术不仅在传统(98.49%对97.36%)和资源受限情况(94.91%对83.83%)下都能产生高稳健结果,而且为单像素传感提供了一种更实用、强大的检测方式,所需人力和计算资源更少。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验