Department of Zoology, Faculty of Science, University of British Columbia, Vancouver, BC, Canada.
WildResearch Society, Richmond, BC, Canada.
J Evol Biol. 2024 Feb 14;37(2):171-188. doi: 10.1093/jeb/voae004.
When a single species evolves into multiple descendent species, some parts of the genome can play a key role in the evolution of reproductive isolation while other parts flow between the evolving species via interbreeding. Genomic evolution during the speciation process is particularly interesting when major components of the genome-for instance, sex chromosomes vs. autosomes vs. mitochondrial DNA-show widely differing patterns of relationships between three diverging populations. The golden-crowned sparrow (Zonotrichia atricapilla) and the white-crowned sparrow (Zonotrichia leucophrys) are phenotypically differentiated sister species that are largely reproductively isolated despite possessing similar mitochondrial genomes, likely due to recent introgression. We assessed variation in more than 45,000 single nucleotide polymorphisms to determine the structure of nuclear genomic differentiation between these species and between two hybridizing subspecies of Z. leucophrys. The two Z. leucophrys subspecies show moderate levels of relative differentiation and patterns consistent with a history of recurrent selection in both ancestral and daughter populations, with much of the sex chromosome Z and a large region on the autosome 1A showing increased differentiation compared to the rest of the genome. The two species Z. leucophrys and Z. atricapilla show high relative differentiation and strong heterogeneity in the level of differentiation among various chromosomal regions, with a large portion of the sex chromosome (Z) showing highly divergent haplotypes between these species. Studies of speciation often emphasize mitochondrial DNA differentiation, but speciation between Z. atricapilla and Z. leucophrys appears primarily associated with Z chromosome divergence and more moderately associated with autosomal differentiation, whereas mitochondria are highly similar due apparently to recent introgression. These results add to the growing body of evidence for highly heterogeneous patterns of genomic differentiation during speciation, with some genomic regions showing a lack of gene flow between populations many hundreds of thousands of years before other genomic regions.
当一个单一物种进化成多个后代物种时,基因组的某些部分可以在生殖隔离的进化中发挥关键作用,而其他部分则通过杂交在进化物种之间流动。在物种形成过程中,基因组的进化特别有趣,因为基因组的主要成分——例如性染色体与常染色体与线粒体 DNA——在三个分歧种群之间表现出广泛不同的关系模式。金冠雀(Zonotrichia atricapilla)和白头雀(Zonotrichia leucophrys)是表型分化的姐妹物种,尽管它们拥有相似的线粒体基因组,但由于最近的基因渗入,它们在很大程度上是生殖隔离的。我们评估了超过 45000 个单核苷酸多态性的变异,以确定这两个物种以及两个杂交亚种 Z. leucophrys 之间的核基因组分化结构。这两个 Z. leucophrys 亚种显示出中等水平的相对分化,并且模式与祖先和后代种群中反复选择的历史一致,与基因组的其余部分相比,性染色体 Z 和 1A 染色体上的一个大区域显示出增加的分化。Z. leucophrys 和 Z. atricapilla 这两个物种显示出高的相对分化和不同染色体区域分化水平的强烈异质性,性染色体(Z)的大部分区域显示出这些物种之间高度分化的单倍型。物种形成的研究通常强调线粒体 DNA 的分化,但 Z. atricapilla 和 Z. leucophrys 之间的物种形成似乎主要与 Z 染色体的分歧有关,与常染色体的分化更中度相关,而线粒体则非常相似,显然是由于最近的基因渗入。这些结果增加了越来越多的证据,证明在物种形成过程中基因组分化存在高度异质的模式,一些基因组区域在其他基因组区域数百万年之前就表现出种群之间缺乏基因流动。