Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing, China.
Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, School of Medicine, Southeast University, Nanjing, China.
Med Phys. 2024 Jul;51(7):4936-4947. doi: 10.1002/mp.16968. Epub 2024 Feb 2.
Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) plays a crucial role in the diagnosis and measurement of hepatocellular carcinoma (HCC). The multi-modality information contained in the multi-phase images of DCE-MRI is important for improving segmentation. However, this remains a challenging task due to the heterogeneity of HCC, which may cause one HCC lesion to have varied imaging appearance in each phase of DCE-MRI. In particular, some phases exhibit inconsistent sizes and boundaries will result in a lack of correlation between modalities, and it may pose inaccurate segmentation results.
We aim to design a multi-modality segmentation model that can learn meaningful inter-phase correlation for achieving HCC segmentation.
In this study, we propose a two-stage progressive attention segmentation framework (TPA) for HCC based on the transformer and the decision-making process of radiologists. Specifically, the first stage aims to fuse features from multi-phase images to identify HCC and provide localization region. In the second stage, a multi-modality attention transformer module (MAT) is designed to focus on the features that can represent the actual size.
We conduct training, validation, and test in a single-center dataset (386 cases), followed by external test on a batch of multi-center datasets (83 cases). Furthermore, we analyze a subgroup of data with weak inter-phase correlation in the test set. The proposed model achieves Dice coefficient of 0.822 and 0.772 in the internal and external test sets, respectively, and 0.829, 0.791 in the subgroup. The experimental results demonstrate that our model outperforms state-of-the-art models, particularly within subgroup.
The proposed TPA provides best segmentation results, and utilizing clinical prior knowledge for network design is practical and feasible.
动态对比增强磁共振成像(DCE-MRI)在肝细胞癌(HCC)的诊断和测量中起着至关重要的作用。DCE-MRI 的多期图像中包含的多模态信息对于提高分割效果非常重要。然而,由于 HCC 的异质性,这仍然是一项具有挑战性的任务,因为一个 HCC 病变在 DCE-MRI 的每个阶段可能具有不同的成像表现。特别是,一些相位表现出不一致的大小和边界,这将导致模态之间缺乏相关性,并且可能导致分割结果不准确。
我们旨在设计一种多模态分割模型,该模型可以学习有意义的相位间相关性,以实现 HCC 分割。
在这项研究中,我们提出了一种基于变压器和放射科医生决策过程的两阶段渐进注意分割框架(TPA)用于 HCC。具体来说,第一阶段旨在融合多期图像的特征来识别 HCC 并提供定位区域。在第二阶段,设计了一种多模态注意变压器模块(MAT),以关注能够代表实际大小的特征。
我们在一个单中心数据集(386 例)中进行了训练、验证和测试,然后在一批多中心数据集(83 例)上进行了外部测试。此外,我们还分析了测试集中相位间相关性较弱的一个子组数据。所提出的模型在内部和外部测试集分别获得了 0.822 和 0.772 的 Dice 系数,在子组中分别获得了 0.829 和 0.791 的 Dice 系数。实验结果表明,我们的模型优于最先进的模型,特别是在子组中。
所提出的 TPA 提供了最佳的分割结果,并且利用临床先验知识进行网络设计是实用且可行的。