Suppr超能文献

细菌 motif 非编码 RNA 的遗传破坏导致孢子形成和聚集缺陷。

Genetic disruption of the bacterial motif noncoding RNA causes defects in sporulation and aggregation.

机构信息

Department of Microbial Pathogenesis, Yale University, New Haven, CT 06536.

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511-8103.

出版信息

Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2318008121. doi: 10.1073/pnas.2318008121. Epub 2024 Feb 2.

Abstract

Several structured noncoding RNAs in bacteria are essential contributors to fundamental cellular processes. Thus, discoveries of additional ncRNA classes provide opportunities to uncover and explore biochemical mechanisms relevant to other major and potentially ancient processes. A candidate structured ncRNA named the " motif" has been found via bioinformatic analyses in over 2,500 bacterial species. The gene coding for the RNA typically resides between the and genes of many species of Bacillota and Actinomycetota. Structural probing of the motif RNA from the Gram-positive anaerobe confirms key features of its sophisticated secondary structure model. Expression analysis of motif RNA reveals that the RNA is constitutively produced but reaches peak abundance during the transition from exponential growth to stationary phase. The motif RNA becomes the fourth most abundant RNA in , excluding ribosomal RNAs and transfer RNAs. Genetic disruption of the motif RNA causes cells to exhibit substantially decreased spore formation and diminished ability to aggregate. Restoration of normal cellular function in this knock-out strain is achieved by expression of a motif gene from a plasmid. These results demonstrate that motif RNAs normally participate in major cell differentiation processes by operating as a trans-acting factor.

摘要

几种细菌中的结构非编码 RNA 是基本细胞过程的重要贡献者。因此,发现更多的 ncRNA 类别为揭示和探索与其他主要且具有潜在古老过程相关的生化机制提供了机会。通过生物信息学分析在超过 2500 种细菌物种中发现了一种名为“ motif”的候选结构 ncRNA。编码 RNA 的基因通常位于 Bacillota 和 Actinomycetota 许多物种的 和 基因之间。对革兰氏阳性厌氧菌 的 motif RNA 的结构探测证实了其复杂二级结构模型的关键特征。对 motif RNA 的表达分析表明,该 RNA 是组成型产生的,但在从指数生长到静止期的过渡过程中达到丰度峰值。除核糖体 RNA 和转移 RNA 外, motif RNA 成为 中第四丰富的 RNA。破坏 motif RNA 的基因会导致细胞的孢子形成大大减少,聚集能力下降。通过从质粒表达 motif 基因,可使该敲除株系恢复正常的细胞功能。这些结果表明, motif RNA 通常作为一种反式作用因子参与主要的细胞分化过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9022/10861870/9ec5ffe11016/pnas.2318008121fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验