Suppr超能文献

基于分层支持向量回归的 DPRA 半胱氨酸耗竭预测的计算模型的开发。

Development of a hierarchical support vector regression-based in silico model for the prediction of the cysteine depletion in DPRA.

机构信息

Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan.

Institute of Respiratory Disease Department of Basic Medical Science Xiamen Medical College, Xiamen 361023, Fujian, China.

出版信息

Toxicology. 2024 Mar;503:153739. doi: 10.1016/j.tox.2024.153739. Epub 2024 Feb 1.

Abstract

Topical and transdermal treatments have been dramatically growing recently and it is crucial to consider skin sensitization during the drug discovery and development process for these administration routes. Various tests, including animal and non-animal approaches, have been devised to assess the potential for skin sensitization. Furthermore, numerous in silico models have been created, providing swift and cost-effective alternatives to traditional methods such as in vivo, in vitro, and in chemico methods for categorizing compounds. In this study, a quantitative structure-activity relationship (QSAR) model was developed using the innovative hierarchical support vector regression (HSVR) scheme. The aim was to quantitatively predict the potential for skin sensitization by analyzing the percent of cysteine depletion in Direct Peptide Reactivity Assay (DPRA). The results demonstrated accurate, consistent, and robust predictions in the training set, test set, and outlier set. Consequently, this model can be employed to estimate skin sensitization potential of novel or virtual compounds.

摘要

近年来,局部和透皮治疗方法有了显著的发展,因此在这些给药途径的药物发现和开发过程中,考虑皮肤致敏性至关重要。已经设计了各种测试,包括动物和非动物方法,以评估皮肤致敏的潜力。此外,还创建了许多计算模型,为传统方法(如体内、体外和化学方法)提供了快速且具有成本效益的替代方法,用于对化合物进行分类。在这项研究中,使用创新的分层支持向量回归 (HSVR) 方案开发了定量构效关系 (QSAR) 模型。目的是通过分析直接肽反应性测定 (DPRA) 中半胱氨酸耗竭的百分比来定量预测皮肤致敏的潜力。结果表明,在训练集、测试集和离群值集中进行了准确、一致和稳健的预测。因此,该模型可用于估计新型或虚拟化合物的皮肤致敏潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验