Suppr超能文献

血液转录组的状态转换建模预测慢性髓性白血病的疾病进展和治疗反应。

State-transition modeling of blood transcriptome predicts disease evolution and treatment response in chronic myeloid leukemia.

机构信息

Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CAL, 91010, USA.

Department of Hematologic Malignancies Translational Science, Beckman Research Institute and Division of Leukemia, City of Hope National Medical Center, Duarte, CAL, 91010, USA.

出版信息

Leukemia. 2024 Apr;38(4):769-780. doi: 10.1038/s41375-024-02142-9. Epub 2024 Feb 2.

Abstract

Chronic myeloid leukemia (CML) is initiated and maintained by BCR::ABL which is clinically targeted using tyrosine kinase inhibitors (TKIs). TKIs can induce long-term remission but are also not curative. Thus, CML is an ideal system to test our hypothesis that transcriptome-based state-transition models accurately predict cancer evolution and treatment response. We collected time-sequential blood samples from tetracycline-off (Tet-Off) BCR::ABL-inducible transgenic mice and wild-type controls. From the transcriptome, we constructed a CML state-space and a three-well leukemogenic potential landscape. The potential's stable critical points defined observable disease states. Early states were characterized by anti-CML genes opposing leukemia; late states were characterized by pro-CML genes. Genes with expression patterns shaped similarly to the potential landscape were identified as drivers of disease transition. Re-introduction of tetracycline to silence the BCR::ABL gene returned diseased mice transcriptomes to a near healthy state, without reaching it, suggesting parts of the transition are irreversible. TKI only reverted the transcriptome to an intermediate disease state, without approaching a state of health; disease relapse occurred soon after treatment. Using only the earliest time-point as initial conditions, our state-transition models accurately predicted both disease progression and treatment response, supporting this as a potentially valuable approach to time clinical intervention, before phenotypic changes become detectable.

摘要

慢性髓性白血病(CML)由 BCR::ABL 引发并维持,目前临床上采用酪氨酸激酶抑制剂(TKI)进行靶向治疗。TKI 可以诱导长期缓解,但不能治愈疾病。因此,CML 是一个理想的系统,可以验证我们的假设,即基于转录组的状态转换模型可以准确预测癌症的进化和治疗反应。我们从四环素关闭(Tet-Off)BCR::ABL 诱导型转基因小鼠和野生型对照的时间序列血液样本中收集数据。基于转录组,我们构建了 CML 状态空间和具有三个稳定状态的白血病潜在景观。潜在的稳定临界点定义了可观察的疾病状态。早期状态的特征是抗 CML 基因对抗白血病;晚期状态的特征是促 CML 基因。表达模式与潜在景观相似的基因被鉴定为疾病转换的驱动因素。重新引入四环素以沉默 BCR::ABL 基因,使患病小鼠的转录组恢复到接近健康状态,但未达到健康状态,这表明部分转换是不可逆转的。TKI 仅将转录组恢复到中间疾病状态,而未接近健康状态;治疗后不久就出现了疾病复发。仅使用最早的时间点作为初始条件,我们的状态转换模型准确预测了疾病进展和治疗反应,这表明这是一种有前途的方法,可以在表型变化变得可检测之前,进行时间临床干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/034c/10997512/4657a4b9ec29/41375_2024_2142_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验