Suppr超能文献

DendroX:树状图中的多层次多聚类选择。

DendroX: multi-level multi-cluster selection in dendrograms.

机构信息

Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China.

Department of Clinical and Translational Medicine, 3D Medicines Inc., Shanghai, China.

出版信息

BMC Genomics. 2024 Feb 2;25(1):134. doi: 10.1186/s12864-024-10048-0.

Abstract

BACKGROUND

Cluster heatmaps are widely used in biology and other fields to uncover clustering patterns in data matrices. Most cluster heatmap packages provide utility functions to divide the dendrograms at a certain level to obtain clusters, but it is often difficult to locate the appropriate cut in the dendrogram to obtain the clusters seen in the heatmap or computed by a statistical method. Multiple cuts are required if the clusters locate at different levels in the dendrogram.

RESULTS

We developed DendroX, a web app that provides interactive visualization of a dendrogram where users can divide the dendrogram at any level and in any number of clusters and pass the labels of the identified clusters for functional analysis. Helper functions are provided to extract linkage matrices from cluster heatmap objects in R or Python to serve as input to the app. A graphic user interface was also developed to help prepare input files for DendroX from data matrices stored in delimited text files. The app is scalable and has been tested on dendrograms with tens of thousands of leaf nodes. As a case study, we clustered the gene expression signatures of 297 bioactive chemical compounds in the LINCS L1000 dataset and visualized them in DendroX. Seventeen biologically meaningful clusters were identified based on the structure of the dendrogram and the expression patterns in the heatmap. We found that one of the clusters consisting of mostly naturally occurring compounds is not previously reported and has its members sharing broad anticancer, anti-inflammatory and antioxidant activities.

CONCLUSIONS

DendroX solves the problem of matching visually and computationally determined clusters in a cluster heatmap and helps users navigate among different parts of a dendrogram. The identification of a cluster of naturally occurring compounds with shared bioactivities implicates a convergence of biological effects through divergent mechanisms.

摘要

背景

聚类热图广泛应用于生物学和其他领域,以揭示数据矩阵中的聚类模式。大多数聚类热图包都提供了实用函数,可将树状图在某个级别上进行划分,以获得聚类,但通常很难在树状图中找到合适的分割来获得热图中看到的聚类或通过统计方法计算的聚类。如果聚类位于树状图的不同级别,则需要进行多次分割。

结果

我们开发了 DendroX,这是一个 Web 应用程序,提供了树状图的交互式可视化,用户可以在任何级别和任意数量的聚类中划分树状图,并将识别出的聚类标签传递给功能分析。还提供了辅助函数,可从 R 或 Python 中的聚类热图对象中提取链接矩阵,作为应用程序的输入。还开发了图形用户界面,以帮助从存储在分隔文本文件中的数据矩阵中为 DendroX 准备输入文件。该应用程序是可扩展的,已经在具有数万个叶节点的树状图上进行了测试。作为案例研究,我们对 LINCS L1000 数据集 297 种生物活性化合物的基因表达特征进行聚类,并在 DendroX 中进行可视化。根据树状图的结构和热图中的表达模式,确定了 17 个具有生物学意义的聚类。我们发现,由大多数天然化合物组成的一个聚类以前没有报道过,其成员具有广泛的抗癌、抗炎和抗氧化活性。

结论

DendroX 解决了在聚类热图中匹配视觉和计算确定的聚类的问题,并帮助用户在树状图的不同部分之间进行导航。具有共享生物活性的天然化合物聚类的鉴定表明,通过不同的机制产生了生物效应的收敛。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b471/10835886/c76029aeaf54/12864_2024_10048_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验