Kumar Sahu Aloka, Yadav Sushant, Banerjee Debarun, Rufford Thomas E, Upadhyayula Sreedevi
The University of Queensland─IIT Delhi Academy of Research (UQIDAR), Hauz Khas 110016, New Delhi, India.
Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas 110016, New Delhi, India.
ACS Appl Mater Interfaces. 2024 Feb 14;16(6):7057-7069. doi: 10.1021/acsami.3c15915. Epub 2024 Feb 3.
Titanate perovskite (ATiO) semiconductors show prospects of being active photocatalysts in the conversion of CO to chemical fuels such as methanol (CHOH) in the aqueous phase. Some of the challenges in using ATiO are limited light-harvesting capability, rapid bulk charge recombination, and the low density of catalytic sites participating in CO reduction. To address these challenges, Ga-doped NiTiO (GNTO) photocatalysts in which Ga ions substitute for Ti ions in the crystal lattice to form electron trap states and oxygen vacancies have been synthesized in this work. The synthesized GNTO was then loaded with Ru nanoparticles to accelerate charge separation and enable excellent CO photoreduction activity under visible light. CO photoreduction was conducted in a batch photoreactor charged with a 0.1 M NaHCO aqueous solution at room temperature and a 3.5 bar pressure using a 1.0 wt % Ru-GNTO photocatalyst to yield methanol at a rate of 84.45 μmol g h. A small amount of methane was produced as a side product at 21.35 μmol g h, which is also a fuel molecule. We attribute this high catalytic activity toward CO photoreduction to a synergistic combination of our novel heterostructured 1.0 wt % Ru-GNTO photocatalyst and the implementation of a pressurized photoreactor. This work demonstrates an effective strategy for metal doping with active nanospecies functionality to improve the performance of ATiO photocatalysts in valorizing CO to solar fuels.
钛酸钙钛矿(ATiO)半导体在水相中将CO转化为甲醇(CHOH)等化学燃料方面展现出作为活性光催化剂的前景。使用ATiO的一些挑战包括光捕获能力有限、体电荷快速复合以及参与CO还原的催化位点密度低。为应对这些挑战,在本工作中合成了Ga掺杂的NiTiO(GNTO)光催化剂,其中Ga离子在晶格中替代Ti离子以形成电子陷阱态和氧空位。然后将合成的GNTO负载Ru纳米颗粒以加速电荷分离,并在可见光下实现优异的CO光还原活性。在室温下、3.5巴压力下,使用1.0 wt%的Ru-GNTO光催化剂在装有0.1 M NaHCO水溶液的间歇式光反应器中进行CO光还原,以84.45 μmol g h的速率生成甲醇。作为副产物产生了少量甲烷,速率为21.35 μmol g h,甲烷也是一种燃料分子。我们将这种对CO光还原的高催化活性归因于我们新型异质结构的1.0 wt% Ru-GNTO光催化剂与加压光反应器的协同组合。这项工作展示了一种有效的策略,即通过金属掺杂与活性纳米物种功能来提高ATiO光催化剂在将CO转化为太阳能燃料方面的性能。