Georges Tristan, Chèvre Romain, Cousin Samuel F, Gervais Christel, Thureau Pierre, Mollica Giulia, Azaïs Thierry
Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 Place Jussieu, 75005 Paris, France.
Aix Marseille Univ, CNRS, ICR, 13397 Marseille, France.
ACS Omega. 2024 Jan 19;9(4):4881-4891. doi: 10.1021/acsomega.3c08292. eCollection 2024 Jan 30.
Calcium ion complexation in aqueous solutions is of paramount importance in biology as it is related to cell signaling, muscle contraction, or biomineralization. However, Ca-complexes are dynamic soluble entities challenging to describe at the molecular level. Nuclear magnetic resonance appears as a method of choice to probe Ca-complexes. However, Ca NMR exhibits severe limitations arising from the low natural abundance coupled to the low gyromagnetic ratio and the quadrupolar nature of Ca, which overall make it a very unreceptive nucleus. Here, we show that Ca dynamic nuclear polarization (DNP) NMR of Ca-labeled frozen solutions is an efficient approach to enhance the NMR receptivity of Ca and to obtain structural insights about calcium ions complexed with representative ligands including water molecules, ethylenediaminetetraacetic acid (EDTA), and l-aspartic acid (l-Asp). In these conditions and in combination with numerical simulations and calculations, we show that Ca nuclei belonging to Ca complexed to the investigated ligands exhibit rather low quadrupolar couplings (with typically ranging from 0.6 to 1 MHz) due to high symmetrical environments and potential residual dynamics in vitrified solutions at a temperature of 100 K. As a consequence, when H→Ca cross-polarization (CP) is used to observe Ca central transition, "high-power" ν(Ca) conditions, typically used to detect spin 1/2 nuclei, provide ∼120 times larger sensitivity than "low-power" conditions usually employed for detection of quadrupolar nuclei. These "high-power" CPMAS conditions allow two-dimensional (2D) H-Ca HetCor spectra to be readily recorded, highlighting various Ca-ligand interactions in solution. This significant increase in Ca NMR sensitivity results from the combination of distinct advantages: (i) an efficient H-mediated polarization transfer from DNP, resembling the case of low-natural-abundance spin 1/2 nuclei, (ii) a reduced dynamics, allowing the use of CP as a sensitivity enhancement technique, and (iii) the presence of a relatively highly symmetrical Ca environment, which, combined to residual dynamics, leads to the averaging of the quadrupolar interaction and hence to efficient high-power CP conditions. Interestingly, these results indicate that the use of high-power CP conditions is an effective way of selecting symmetrical and/or dynamic Ca environments of calcium-containing frozen solution, capable of filtering out more rigid and/or anisotropic Ca sites characterized by larger quadrupolar constants. This approach could open the way to the atomic-level investigation of calcium environments in more complex, heterogeneous frozen solutions, such as those encountered at the early stages of calcium phosphate or calcium carbonate biomineralization events.
水溶液中的钙离子络合在生物学中至关重要,因为它与细胞信号传导、肌肉收缩或生物矿化有关。然而,钙络合物是动态可溶实体,在分子水平上难以描述。核磁共振似乎是探测钙络合物的首选方法。然而,钙核磁共振存在严重局限性,这源于钙的天然丰度低、旋磁比低以及四极性质,总体而言使其成为一个极难检测的原子核。在此,我们表明,对钙标记的冷冻溶液进行钙动态核极化(DNP)核磁共振是提高钙核磁共振灵敏度并获取与包括水分子、乙二胺四乙酸(EDTA)和L - 天冬氨酸(L - Asp)在内的代表性配体络合的钙离子结构信息的有效方法。在这些条件下,并结合数值模拟和计算,我们表明,由于在100 K温度下玻璃化溶液中存在高对称环境和潜在的残余动力学,与所研究配体络合的钙的钙核表现出相当低的四极耦合(通常范围为0.6至1 MHz)。因此,当使用H→Ca交叉极化(CP)来观察钙中心跃迁时,通常用于检测自旋1/2核的“高功率”ν(Ca)条件比通常用于检测四极核的“低功率”条件提供约120倍的灵敏度。这些“高功率”CPMAS条件使得二维(2D)H - Ca异核相关谱能够轻松记录,突出了溶液中各种钙 - 配体相互作用。钙核磁共振灵敏度的显著提高源于多种独特优势的结合:(i)来自DNP的高效H介导的极化转移,类似于低天然丰度自旋1/2核的情况;(ii)动力学降低,允许使用CP作为灵敏度增强技术;(iii)存在相对高度对称的钙环境,与残余动力学相结合,导致四极相互作用的平均化,从而实现高效的高功率CP条件。有趣的是,这些结果表明,使用高功率CP条件是选择含钙冷冻溶液中对称和/或动态钙环境的有效方法,能够滤除具有较大四极常数的更刚性和/或各向异性的钙位点。这种方法可能为在更复杂、异质的冷冻溶液中对钙环境进行原子水平的研究开辟道路,例如在磷酸钙或碳酸钙生物矿化事件早期遇到的那些溶液。