Suppr超能文献

通过高斯无缝惩罚对生存数据进行同时变量选择和估计。

Simultaneous variable selection and estimation for survival data via the Gaussian seamless- penalty.

作者信息

Liu Zili, Wang Hong

机构信息

School of Mathematics and Statistics, Central South University, Changsha, Hunan, China.

出版信息

Stat Med. 2024 Apr 15;43(8):1509-1526. doi: 10.1002/sim.10031. Epub 2024 Feb 6.

Abstract

We propose a new simultaneous variable selection and estimation procedure with the Gaussian seamless- (GSELO) penalty for Cox proportional hazard model and additive hazards model. The GSELO procedure shows good potential to improve the existing variable selection methods by taking strength from both best subset selection (BSS) and regularization. In addition, we develop an iterative algorithm to implement the proposed procedure in a computationally efficient way. Theoretically, we establish the convergence properties of the algorithm and asymptotic theoretical properties of the proposed procedure. Since parameter tuning is crucial to the performance of the GSELO procedure, we also propose an extended Bayesian information criteria (EBIC) parameter selector for the GSELO procedure. Simulated and real data studies have demonstrated the prediction performance and effectiveness of the proposed method over several state-of-the-art methods.

摘要

我们针对Cox比例风险模型和加法风险模型,提出了一种新的同时进行变量选择和估计的方法,该方法采用高斯无缝(GSELO)惩罚。GSELO方法通过结合最佳子集选择(BSS)和正则化的优势,在改进现有变量选择方法方面展现出良好的潜力。此外,我们开发了一种迭代算法,以高效计算的方式实现所提出的方法。从理论上讲,我们建立了算法的收敛性质以及所提方法的渐近理论性质。由于参数调整对GSELO方法的性能至关重要,我们还为GSELO方法提出了一种扩展的贝叶斯信息准则(EBIC)参数选择器。模拟和实际数据研究表明,所提方法在预测性能和有效性方面优于几种现有最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验