Suppr超能文献

稳健变量选择方法与 Cox 模型:一项选择性实用基准研究。

Robust variable selection methods with Cox model-a selective practical benchmark study.

机构信息

School of Mathematics, Statistics, Chemistry and Physics, Murdoch University, 90 South St, Murdoch WA 6150, Australia.

School of Mathematical and Physical Sciences, Macquarie University, 12 Wally's Walk, Macquarie Park NSW 2109, Australia.

出版信息

Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae508.

Abstract

With the advancement of biological and medical techniques, we can now obtain large amounts of high-dimensional omics data with censored survival information. This presents challenges in method development across various domains, particularly in variable selection. Given the inherently skewed distribution of the survival time outcome variable, robust variable selection methods offer potential solutions. Recently, there has been a focus on extending robust variable selection methods from linear regression models to survival models. However, despite these developments, robust methods are currently rarely used in practical applications, possibly due to a limited appreciation of their overall good performance. To address this gap, we conduct a selective review comparing the variable selection performance of twelve robust and non-robust penalised Cox models. Our study reveals the intricate relationship among covariates, survival outcomes, and modeling approaches, demonstrating how subtle variations can significantly impact the performance of methods considered. Based on our empirical research, we recommend the use of robust Cox models for variable selection in practice based on their superior performance in presence of outliers while maintaining good efficiency and accuracy when there are no outliers. This study provides valuable insights for method development and application, contributing to a better understanding of the relationship between correlated covariates and censored outcomes.

摘要

随着生物和医学技术的进步,我们现在可以获得带有删失生存信息的大量高维组学数据。这在跨多个领域的方法开发中带来了挑战,特别是在变量选择方面。鉴于生存时间结果变量固有的偏态分布,稳健的变量选择方法提供了潜在的解决方案。最近,人们关注将稳健的变量选择方法从线性回归模型扩展到生存模型。然而,尽管有这些发展,稳健的方法在实际应用中目前很少使用,可能是由于对其整体良好性能的认识有限。为了解决这一差距,我们进行了一项选择性综述,比较了十二种稳健和非稳健惩罚 Cox 模型的变量选择性能。我们的研究揭示了协变量、生存结果和建模方法之间的复杂关系,展示了细微的变化如何显著影响所考虑方法的性能。基于我们的实证研究,我们建议在实践中使用稳健的 Cox 模型进行变量选择,因为它们在存在异常值时表现更好,而在没有异常值时保持良好的效率和准确性。这项研究为方法开发和应用提供了有价值的见解,有助于更好地理解相关协变量和删失结果之间的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/836a/11472364/237b38ac92e8/bbae508f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验