College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
Plant Sci. 2024 May;342:112023. doi: 10.1016/j.plantsci.2024.112023. Epub 2024 Feb 5.
N-methyladenosine (mA) RNA modification is critical for plant growth, development, and environmental stress response. While short-term stress impacts on mA are well-documented, the consequences of prolonged stress remain underexplored. This study conducts a thorough transcriptome-wide analysis of mA modifications following 28-day exposure to 200 mM NaCl. We detected 11,149 differentially expressed genes (DEGs) and 12,936 differentially methylated mA peaks, along with a global decrease in mA levels. Notably, about 62% of mA-modified DEGs, including demethylase genes like PvALKBH6_N, PvALKBH9_K, and PvALKBH10_N, showed increased expression and reduced mA peaks, suggesting that decreased mA methylation may enhance gene expression under salt stress. Consistent expression and methylation patterns were observed in key genes related to ion homeostasis (e.g., H-ATPase 1, High-affinity Ktransporter 5), antioxidant defense (Catalase 1/2, Copper/zinc superoxide dismutase 2, Glutathione synthetase 1), and osmotic regulation (delta 1-pyrroline-5-carboxylate synthase 2, Pyrroline-5-carboxylate reductase). These findings provide insights into the adaptive mechanisms of switchgrass under long-term salt stress and highlight the potential of regulating mA modifications as a novel approach for crop breeding strategies focused on stress resistance.
N6-甲基腺嘌呤(m6A)RNA 修饰对于植物的生长、发育和环境胁迫响应至关重要。虽然短期胁迫对 mA 的影响已有充分的研究,但长期胁迫的后果仍未得到充分探索。本研究对拟南芥在 200 mM NaCl 胁迫下暴露 28 天后的 mA 修饰进行了全面的转录组分析。我们检测到 11149 个差异表达基因(DEGs)和 12936 个差异甲基化 mA 峰,同时 mA 水平整体下降。值得注意的是,约 62%的 mA 修饰的 DEGs,包括去甲基化酶基因如 PvALKBH6_N、PvALKBH9_K 和 PvALKBH10_N,表现出表达增加和 mA 峰减少,这表明在盐胁迫下,m6A 去甲基化可能增强基因表达。与离子稳态(如 H-ATPase 1、高亲和力 K 转运蛋白 5)、抗氧化防御(过氧化氢酶 1/2、铜/锌超氧化物歧化酶 2、谷胱甘肽合成酶 1)和渗透调节(δ1-吡咯啉-5-羧酸合酶 2、吡咯啉-5-羧酸还原酶)相关的关键基因表现出一致的表达和甲基化模式。这些发现为柳枝稷在长期盐胁迫下的适应机制提供了新的见解,并强调了调节 mA 修饰作为一种新型作物育种策略的潜力,该策略专注于抗逆性。