文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

评估两种基于深度学习的方法来检测甘蓝中生长的杂草。

Evaluation of two deep learning-based approaches for detecting weeds growing in cabbage.

机构信息

Shandong Provincial University Laboratory for Protected Horticulture, Weifang University of Science and Technology, Weifang, China.

Peking University Institute of Advanced Agricultural Sciences/Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China.

出版信息

Pest Manag Sci. 2024 Jun;80(6):2817-2826. doi: 10.1002/ps.7990. Epub 2024 Feb 7.


DOI:10.1002/ps.7990
PMID:38323798
Abstract

BACKGROUND: Machine vision-based precision weed management is a promising solution to substantially reduce herbicide input and weed control cost. The objective of this research was to compare two different deep learning-based approaches for detecting weeds in cabbage: (1) detecting weeds directly, and (2) detecting crops by generating the bounding boxes covering the crops and any green pixels outside the bounding boxes were deemed as weeds. RESULTS: The precision, recall, F1-score, mAP, mAP0 of You Only Look Once (YOLO) v5 for detecting cabbage were 0.986, 0.979, 0.982, 0.995, and 0.851, respectively, while these metrics were 0.973, 0.985, 0.979, 0.993, and 0.906 for YOLOv8, respectively. However, none of these metrics exceeded 0.891 when detecting weeds. The reduced performances for directly detecting weeds could be attributed to the diverse weed species at varying densities and growth stages with different plant morphologies. A segmentation procedure demonstrated its effectiveness for extracting weeds outside the bounding boxes covering the crops, and thereby realizing effective indirect weed detection. CONCLUSION: The indirect weed detection approach demands less manpower as the need for constructing a large training dataset containing a variety of weed species is unnecessary. However, in a certain case, weeds are likely to remain undetected due to their growth in close proximity with crops and being situated within the predicted bounding boxes that encompass the crops. The models generated in this research can be used in conjunction with the machine vision subsystem of a smart sprayer or mechanical weeder. © 2024 Society of Chemical Industry.

摘要

背景:基于机器视觉的精准杂草管理是一种很有前途的解决方案,可以大大减少除草剂的投入和杂草控制成本。本研究的目的是比较两种不同的基于深度学习的方法来检测白菜中的杂草:(1)直接检测杂草,(2)通过生成覆盖作物的边界框来检测作物,任何边界框外的绿色像素都被视为杂草。

结果:用于检测白菜的 YOLOv5 的精确率、召回率、F1 分数、mAP、mAP0 分别为 0.986、0.979、0.982、0.995、0.851,而 YOLOv8 的这些指标分别为 0.973、0.985、0.979、0.993、0.906。然而,当直接检测杂草时,这些指标都没有超过 0.891。直接检测杂草的性能下降可能归因于不同杂草物种的密度和生长阶段不同,植物形态也不同。分割过程证明了它在外围提取作物边界框之外的杂草的有效性,从而实现了有效的间接杂草检测。

结论:间接杂草检测方法不需要太多的人力,因为不需要构建一个包含多种杂草物种的大型训练数据集。然而,在某些情况下,由于杂草与作物生长得非常接近,并且位于预测的包含作物的边界框内,因此可能会检测不到杂草。本研究生成的模型可以与智能喷雾器或机械除草机的机器视觉子系统一起使用。© 2024 化学工业协会。

相似文献

[1]
Evaluation of two deep learning-based approaches for detecting weeds growing in cabbage.

Pest Manag Sci. 2024-6

[2]
A novel deep learning-based method for detection of weeds in vegetables.

Pest Manag Sci. 2022-5

[3]
A deep learning-based method for classification, detection, and localization of weeds in turfgrass.

Pest Manag Sci. 2022-11

[4]
Detection of broadleaf weeds growing in turfgrass with convolutional neural networks.

Pest Manag Sci. 2019-3-8

[5]
Weed Detection Using Deep Learning: A Systematic Literature Review.

Sensors (Basel). 2023-3-31

[6]
Herbicide-resistant crops: utilities and limitations for herbicide-resistant weed management.

J Agric Food Chem. 2010-6-29

[7]
Weed target detection at seedling stage in paddy fields based on YOLOX.

PLoS One. 2023

[8]
Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton.

Sci Rep. 2022-11-15

[9]
Detection and coverage estimation of purple nutsedge in turf with image classification neural networks.

Pest Manag Sci. 2024-7

[10]
An ultrasonic system for weed detection in cereal crops.

Sensors (Basel). 2012-12-13

引用本文的文献

[1]
Swin Attention Augmented Residual Network: a fine-grained pest image recognition method.

Front Plant Sci. 2025-6-19

[2]
PD-YOLO: a novel weed detection method based on multi-scale feature fusion.

Front Plant Sci. 2025-4-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索