文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 YOLOX 的稻田苗期杂草目标检测。

Weed target detection at seedling stage in paddy fields based on YOLOX.

机构信息

College of Electronic Information Engineering, Guangdong University of Petrochemical Technology, Maoming, China.

College of Engineering, South China Agricultural University, Guangzhou, China.

出版信息

PLoS One. 2023 Dec 13;18(12):e0294709. doi: 10.1371/journal.pone.0294709. eCollection 2023.


DOI:10.1371/journal.pone.0294709
PMID:38091355
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10718464/
Abstract

Weeds are one of the greatest threats to the growth of rice, and the loss of crops is greater in the early stage of rice growth. Traditional large-area spraying cannot selectively spray weeds and can easily cause herbicide waste and environmental pollution. To realize the transformation from large-area spraying to precision spraying in rice fields, it is necessary to quickly and efficiently detect the distribution of weeds. Benefiting from the rapid development of vision technology and deep learning, this study applies a computer vision method based on deep-learning-driven rice field weed target detection. To address the need to identify small dense targets at the rice seedling stage in paddy fields, this study propose a method for weed target detection based on YOLOX, which is composed of a CSPDarknet backbone network, a feature pyramid network (FPN) enhanced feature extraction network and a YOLO Head detector. The CSPDarknet backbone network extracts feature layers with dimensions of 80 pixels ⊆ 80 pixels, 40 pixels ⊆ 40 pixels and 20 pixels ⊆ 20 pixels. The FPN fuses the features from these three scales, and YOLO Head realizes the regression of the object classification and prediction boxes. In performance comparisons of different models, including YOLOv3, YOLOv4-tiny, YOLOv5-s, SSD and several models of the YOLOX series, namely, YOLOX-s, YOLOX-m, YOLOX-nano, and YOLOX-tiny, the results show that the YOLOX-tiny model performs best. The mAP, F1, and recall values from the YOLOX-tiny model are 0.980, 0.95, and 0.983, respectively. Meanwhile, the intermediate variable memory generated during the model calculation of YOLOX-tiny is only 259.62 MB, making it suitable for deployment in intelligent agricultural devices. However, although the YOLOX-tiny model is the best on the dataset in this paper, this is not true in general. The experimental results suggest that the method proposed in this paper can improve the model performance for the small target detection of sheltered weeds and dense weeds at the rice seedling stage in paddy fields. A weed target detection model suitable for embedded computing platforms is obtained by comparing different single-stage target detection models, thereby laying a foundation for the realization of unmanned targeted herbicide spraying performed by agricultural robots.

摘要

杂草是水稻生长的最大威胁之一,在水稻生长的早期阶段,作物的损失更大。传统的大面积喷洒不能有针对性地喷洒杂草,容易造成除草剂浪费和环境污染。为了实现从大面积喷洒向稻田精确喷洒的转变,需要快速有效地检测杂草的分布。受益于视觉技术和深度学习的快速发展,本研究应用了一种基于深度学习驱动的稻田杂草目标检测的计算机视觉方法。为了解决在稻田中识别水稻幼苗阶段小而密集的目标的需要,本研究提出了一种基于 YOLOX 的杂草目标检测方法,该方法由 CSPDarknet 骨干网络、特征金字塔网络(FPN)增强特征提取网络和 YOLO 头检测器组成。CSPDarknet 骨干网络提取维度为 80 像素 ⊆ 80 像素、40 像素 ⊆ 40 像素和 20 像素 ⊆ 20 像素的特征层。FPN 融合了这三个尺度的特征,YOLO 头实现了物体分类和预测框的回归。在不同模型的性能比较中,包括 YOLOv3、YOLOv4-tiny、YOLOv5-s、SSD 和 YOLOX 系列的几个模型,即 YOLOX-s、YOLOX-m、YOLOX-nano 和 YOLOX-tiny,结果表明 YOLOX-tiny 模型表现最好。YOLOX-tiny 模型的 mAP、F1 和召回值分别为 0.980、0.95 和 0.983,同时,YOLOX-tiny 模型在计算过程中产生的中间变量内存仅为 259.62MB,适合部署在智能农业设备中。然而,尽管 YOLOX-tiny 模型在本文的数据集中表现最好,但这并不普遍适用。实验结果表明,本文提出的方法可以提高模型对稻田中隐蔽杂草和密集杂草的小目标检测性能。通过比较不同的单阶段目标检测模型,获得了适合嵌入式计算平台的杂草目标检测模型,为农业机器人实现无人靶向施药喷洒奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/a44f53597f69/pone.0294709.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/210be4eb6d21/pone.0294709.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/c6de82c8eab7/pone.0294709.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/3ed8fb9af3d8/pone.0294709.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/8c74f769ee37/pone.0294709.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/8d82e9d46bee/pone.0294709.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/79ead52c666b/pone.0294709.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/51d841604cc7/pone.0294709.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/7a8392908177/pone.0294709.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/27325ccddf1f/pone.0294709.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/7c04117cb636/pone.0294709.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/317271981dcb/pone.0294709.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/a44f53597f69/pone.0294709.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/210be4eb6d21/pone.0294709.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/c6de82c8eab7/pone.0294709.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/3ed8fb9af3d8/pone.0294709.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/8c74f769ee37/pone.0294709.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/8d82e9d46bee/pone.0294709.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/79ead52c666b/pone.0294709.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/51d841604cc7/pone.0294709.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/7a8392908177/pone.0294709.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/27325ccddf1f/pone.0294709.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/7c04117cb636/pone.0294709.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/317271981dcb/pone.0294709.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/395e/10718464/a44f53597f69/pone.0294709.g012.jpg

相似文献

[1]
Weed target detection at seedling stage in paddy fields based on YOLOX.

PLoS One. 2023

[2]
Weed and Corn Seedling Detection in Field Based on Multi Feature Fusion and Support Vector Machine.

Sensors (Basel). 2020-12-31

[3]
Fully convolutional network for rice seedling and weed image segmentation at the seedling stage in paddy fields.

PLoS One. 2019-4-18

[4]
High Speed Railway Fastener Defect Detection by Using Improved YoLoX-Nano Model.

Sensors (Basel). 2022-11-1

[5]
A peanut and weed detection model used in fields based on BEM-YOLOv7-tiny.

Math Biosci Eng. 2023-10-17

[6]
Evaluation of two deep learning-based approaches for detecting weeds growing in cabbage.

Pest Manag Sci. 2024-6

[7]
Enhanced Lightweight YOLOX for Small Object Wildfire Detection in UAV Imagery.

Sensors (Basel). 2024-4-24

[8]
YOLOv8 Model for Weed Detection in Wheat Fields Based on a Visual Converter and Multi-Scale Feature Fusion.

Sensors (Basel). 2024-7-5

[9]
Pest-YOLO: A model for large-scale multi-class dense and tiny pest detection and counting.

Front Plant Sci. 2022-10-25

[10]
Nature-Inspired Search Method and Custom Waste Object Detection and Classification Model for Smart Waste Bin.

Sensors (Basel). 2022-8-18

本文引用的文献

[1]
Identification and Localisation Algorithm for Sugarcane Stem Nodes by Combining YOLOv3 and Traditional Methods of Computer Vision.

Sensors (Basel). 2022-10-28

[2]
A fully convolutional network for weed mapping of unmanned aerial vehicle (UAV) imagery.

PLoS One. 2018-4-26

[3]
Spatial Quality Evaluation of Resampled Unmanned Aerial Vehicle-Imagery for Weed Mapping.

Sensors (Basel). 2015-8-12

[4]
A novel approach for weed type classification based on shape descriptors and a fuzzy decision-making method.

Sensors (Basel). 2014-8-19

[5]
A fast learning algorithm for deep belief nets.

Neural Comput. 2006-7

[6]
Evidence for a transcriptional activation function of BRCA1 C-terminal region.

Proc Natl Acad Sci U S A. 1996-11-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索