Suppr超能文献

带时间窗和碳排放的车辆路径问题:物流配送中的案例研究。

Vehicle routing problem with time windows and carbon emissions: a case study in logistics distribution.

机构信息

School of Information Engineering, Wuhan University of Technology, Wuhan, 430070, Hubei, China.

出版信息

Environ Sci Pollut Res Int. 2024 Jun;31(29):41600-41620. doi: 10.1007/s11356-024-31927-9. Epub 2024 Feb 7.

Abstract

Logistics and transportation industry is not only a major energy consumer, but also a major carbon emitter. Developing green logistics is the only way for the sustainable development of the logistics industry. One of the main factors of environmental pollution is caused by carbon emissions in the process of vehicle transportation, and carbon emissions of vehicle transportation are closely related to routing, road conditions, vehicle speed, and speed fluctuations. The low-carbon vehicle routing problem with high granularity time-dependent speeds, speed fluctuations, road conditions, and time windows is proposed and formally described. In order to finely evaluate the effects of vehicle speed and speed fluctuations on carbon emissions, a graph convolutional network (GCN) is used to predict the high granularity time-dependent traffic speeds. To solve this complicated low-carbon vehicle routing problem, a hybrid genetic algorithm with adaptive variable neighborhood search is proposed to obtain vehicle routing with low carbon emissions. Finally, this method is validated using a case study with the logistics and traffic data in Jingzhou, China, and also the results show the effectiveness of this proposed method.

摘要

物流运输行业不仅是能源消耗的大户,也是碳排放的大户。发展绿色物流是物流行业可持续发展的必由之路。环境污染的一个主要因素是车辆运输过程中产生的碳排放,而车辆运输的碳排放与路线选择、路况、车速以及速度波动密切相关。本文提出并正式描述了具有高粒度时变速度、速度波动、路况和时间窗的低碳车辆路径问题。为了精细评估车速和速度波动对碳排放的影响,使用图卷积网络(GCN)来预测高粒度时变交通速度。为了解决这个复杂的低碳车辆路径问题,提出了一种具有自适应变邻域搜索的混合遗传算法,以获得低碳排放的车辆路径。最后,使用中国荆州的物流和交通数据进行案例研究来验证该方法,结果表明该方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验