Suppr超能文献

DP2LM:利用深度学习方法对具有高维中介变量和复杂混杂因素的中介效应进行估计和假设检验。

DP2LM: leveraging deep learning approach for estimation and hypothesis testing on mediation effects with high-dimensional mediators and complex confounders.

机构信息

Department of Biostatistics, Yale University, New Haven, CT 06520, USA.

出版信息

Biostatistics. 2024 Jul 1;25(3):818-832. doi: 10.1093/biostatistics/kxad037.

Abstract

Traditional linear mediation analysis has inherent limitations when it comes to handling high-dimensional mediators. Particularly, accurately estimating and rigorously inferring mediation effects is challenging, primarily due to the intertwined nature of the mediator selection issue. Despite recent developments, the existing methods are inadequate for addressing the complex relationships introduced by confounders. To tackle these challenges, we propose a novel approach called DP2LM (Deep neural network-based Penalized Partially Linear Mediation). This approach incorporates deep neural network techniques to account for nonlinear effects in confounders and utilizes the penalized partially linear model to accommodate high dimensionality. Unlike most existing works that concentrate on mediator selection, our method prioritizes estimation and inference on mediation effects. Specifically, we develop test procedures for testing the direct and indirect mediation effects. Theoretical analysis shows that the tests maintain the Type-I error rate. In simulation studies, DP2LM demonstrates its superior performance as a modeling tool for complex data, outperforming existing approaches in a wide range of settings and providing reliable estimation and inference in scenarios involving a considerable number of mediators. Further, we apply DP2LM to investigate the mediation effect of DNA methylation on cortisol stress reactivity in individuals who experienced childhood trauma, uncovering new insights through a comprehensive analysis.

摘要

传统的线性中介分析在处理高维中介时存在固有局限性。特别是,由于中介选择问题的交织性质,准确估计和严格推断中介效应具有挑战性。尽管最近取得了一些进展,但现有方法不足以解决混杂因素引入的复杂关系。为了应对这些挑战,我们提出了一种名为 DP2LM(基于深度神经网络的惩罚部分线性中介)的新方法。该方法结合了深度神经网络技术来考虑混杂因素中的非线性效应,并利用惩罚部分线性模型来适应高维性。与大多数专注于中介选择的现有工作不同,我们的方法优先考虑中介效应的估计和推断。具体来说,我们开发了用于检验直接和间接中介效应的检验程序。理论分析表明,这些检验保持了Ⅰ型错误率。在模拟研究中,DP2LM 作为复杂数据的建模工具表现出优越的性能,在广泛的设置中优于现有方法,并在涉及相当数量中介的情况下提供可靠的估计和推断。此外,我们应用 DP2LM 来研究 DNA 甲基化对经历童年创伤的个体皮质醇应激反应的中介效应,通过全面分析揭示了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验