Suppr超能文献

高维中介分析在观察性表观遗传学研究中用于混杂因素的连续结果,使用重叠加权方法。

High-dimensional mediation analysis for continuous outcome with confounders using overlap weighting method in observational epigenetic study.

机构信息

Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.

Department of Radiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.

出版信息

BMC Med Res Methodol. 2024 Jun 3;24(1):125. doi: 10.1186/s12874-024-02254-x.

Abstract

BACKGROUND

Mediation analysis is a powerful tool to identify factors mediating the causal pathway of exposure to health outcomes. Mediation analysis has been extended to study a large number of potential mediators in high-dimensional data settings. The presence of confounding in observational studies is inevitable. Hence, it's an essential part of high-dimensional mediation analysis (HDMA) to adjust for the potential confounders. Although the propensity score (PS) related method such as propensity score regression adjustment (PSR) and inverse probability weighting (IPW) has been proposed to tackle this problem, the characteristics with extreme propensity score distribution of the PS-based method would result in the biased estimation.

METHODS

In this article, we integrated the overlapping weighting (OW) technique into HDMA workflow and proposed a concise and powerful high-dimensional mediation analysis procedure consisting of OW confounding adjustment, sure independence screening (SIS), de-biased Lasso penalization, and joint-significance testing underlying the mixture null distribution. We compared the proposed method with the existing method consisting of PS-based confounding adjustment, SIS, minimax concave penalty (MCP) variable selection, and classical joint-significance testing.

RESULTS

Simulation studies demonstrate the proposed procedure has the best performance in mediator selection and estimation. The proposed procedure yielded the highest true positive rate, acceptable false discovery proportion level, and lower mean square error. In the empirical study based on the GSE117859 dataset in the Gene Expression Omnibus database using the proposed method, we found that smoking history may lead to the estimated natural killer (NK) cell level reduction through the mediation effect of some methylation markers, mainly including methylation sites cg13917614 in CNP gene and cg16893868 in LILRA2 gene.

CONCLUSIONS

The proposed method has higher power, sufficient false discovery rate control, and precise mediation effect estimation. Meanwhile, it is feasible to be implemented with the presence of confounders. Hence, our method is worth considering in HDMA studies.

摘要

背景

中介分析是一种强大的工具,可用于识别暴露于健康结果的因果途径中的中介因素。中介分析已经扩展到研究高维数据环境中大量潜在的中介因素。在观察性研究中,混杂是不可避免的。因此,调整潜在混杂因素是高维中介分析(HDMA)的重要组成部分。尽管已经提出了基于倾向得分(PS)的方法,如倾向得分回归调整(PSR)和逆概率加权(IPW)来解决这个问题,但 PS 方法的极端倾向得分分布特征会导致有偏估计。

方法

在本文中,我们将重叠加权(OW)技术集成到 HDMA 工作流程中,并提出了一种简洁而强大的高维中介分析程序,该程序由 OW 混杂调整、Sure Independence Screening(SIS)、无偏lasso 惩罚和基于混合零假设分布的联合显著性检验组成。我们将所提出的方法与基于 PS 的混杂调整、SIS、极小极大凹惩罚(MCP)变量选择和经典联合显著性检验的现有方法进行了比较。

结果

模拟研究表明,所提出的方法在中介选择和估计方面具有最佳性能。该方法产生了最高的真阳性率、可接受的假发现率水平和较低的均方误差。在基于基因表达综合数据库(GEO)中的 GSE117859 数据集的实证研究中,我们发现吸烟史可能通过一些甲基化标记物的中介作用导致自然杀伤(NK)细胞水平降低,主要包括 CNP 基因中的 cg13917614 甲基化位点和 LILRA2 基因中的 cg16893868 甲基化位点。

结论

所提出的方法具有更高的功效、充分的假发现率控制和精确的中介效应估计。同时,它在存在混杂因素的情况下也是可行的。因此,我们的方法在 HDMA 研究中值得考虑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5b1/11145821/5253d51e8c06/12874_2024_2254_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验