Department of Psychology, San Francisco State University.
J Exp Psychol Gen. 2024 Apr;153(4):1066-1075. doi: 10.1037/xge0001547. Epub 2024 Feb 8.
A Large Language Model (LLM) is an artificial intelligence system trained on vast amounts of natural language data, enabling it to generate human-like responses to written or spoken language input. Generative Pre-Trained Transformer (GPT)-3.5 is an example of an LLM that supports a conversational agent called ChatGPT. In this work, we used a series of novel prompts to determine whether ChatGPT shows heuristics and other context-sensitive responses. We also tested the same prompts on human participants. Across four studies, we found that ChatGPT was influenced by random anchors in making estimates (anchoring, Study 1); it judged the likelihood of two events occurring together to be higher than the likelihood of either event occurring alone, and it was influenced by anecdotal information (representativeness and availability heuristic, Study 2); it found an item to be more efficacious when its features were presented positively rather than negatively-even though both presentations contained statistically equivalent information (framing effect, Study 3); and it valued an owned item more than a newly found item even though the two items were objectively identical (endowment effect, Study 4). In each study, human participants showed similar effects. Heuristics and context-sensitive responses in humans are thought to be driven by cognitive and affective processes such as loss aversion and effort reduction. The fact that an LLM-which lacks these processes-also shows such responses invites consideration of the possibility that language is sufficiently rich to carry these effects and may play a role in generating these effects in humans. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
大型语言模型(LLM)是一种基于大量自然语言数据进行训练的人工智能系统,使其能够对书面或口头语言输入生成类似人类的响应。生成式预训练转换器(GPT)-3.5 是 LLM 的一个示例,它支持一个名为 ChatGPT 的对话代理。在这项工作中,我们使用了一系列新的提示来确定 ChatGPT 是否表现出启发式和其他上下文敏感的响应。我们还在人类参与者身上测试了相同的提示。在四项研究中,我们发现 ChatGPT 在进行估计时受到随机锚点的影响(锚定,研究 1);它判断两个事件同时发生的可能性高于任何一个事件单独发生的可能性,并且受到轶事信息的影响(代表性和可得性启发,研究 2);当它的特征以积极的方式而不是消极的方式呈现时,它会发现一个项目更有效,尽管两种呈现方式都包含了统计学上等效的信息(框架效应,研究 3);并且它更看重自己拥有的物品,而不是新发现的物品,尽管这两个物品在客观上是相同的(禀赋效应,研究 4)。在每项研究中,人类参与者都表现出了类似的效果。人类的启发式和上下文敏感响应被认为是由认知和情感过程驱动的,例如损失厌恶和减少努力。缺乏这些过程的 LLM 也表现出这种响应,这使得人们不得不考虑语言是否足够丰富,能够承载这些效果,并可能在人类中产生这些效果。(PsycInfo 数据库记录(c)2024 APA,保留所有权利)。